

AEROSPACE MATERIAL SPECIFICATION

AMS6931

REV. C

Issued 2004-01
Revised 2014-03

Superseding AMS6931B

Titanium Alloy Bars, forgings and Forging Stock

6.0Al - 4.0V

Annealed

(Composition similar to UNS R56400)

RATIONALE

AMS6931C results from a update of this specification revises the hydrogen content to that of AMS4928 in Table 1, requires vacuum in the first consumable electrode melt (3.2) and agreement on mechanical property values for material outside specification ranges (3.5.1.1.6 and 8.7), adds AS6279 (3.8) and revises the report paragraph (4.4).

1. SCOPE

1.1 Form

This specification covers a titanium alloy in the form of bars and forgings up through 6.000 inches (152.40 mm), inclusive, in diameter or least distance between parallel sides with a maximum cross-sectional area of 48 square inches (309.70 cm²) and forging stock of any size (See 8.7).

1.2 Application

These products have been used typically for parts requiring moderate strength with a maximum service temperature in the 750 to 900 °F (399 to 510 °C) range depending on time at temperature where the product is to be used in the annealed condition, but usage is not limited to such applications.

1.2.1 Certain processing procedures and service conditions may cause these products to become subject to stress-corrosion cracking; ARP982 recommends practices to minimize such conditions.

2. APPLICABLE DOCUMENTS

The issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply.

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2013 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)
Tel: +1 724-776-4970 (outside USA)
Fax: 724-776-0790
Email: CustomerService@sae.org
<http://www.sae.org>

SAE values your input. To provide feedback on this Technical Report, please visit
<http://www.sae.org/technical/standards/AMS6931C>

SAE WEB ADDRESS:

2.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), www.sae.org.

AMS2241	Tolerances, Corrosion and Heat-Resistant Steel, Iron Alloy, Titanium, and Titanium Alloy Bars and Wire
AMS2249	Chemical Check Analysis Limits, Titanium and Titanium Alloys
AMS2368	Sampling and Testing of Wrought Titanium Raw Material, Except forgings and Forging Stock
AMS2631	Ultrasonic Inspection, Titanium and Titanium Alloy Bar and Billet
AMS2643	Structural Examination of Titanium Alloys, Chemical Etch Inspection
AMS2750	Pyrometry
AMS2808	Identification, forgings
AMS2809	Identification, Titanium and Titanium Alloy Wrought Products
ARP982	Minimizing Stress-Corrosion Cracking in Wrought Titanium Alloy Products
AS6279	Industry Standard Practices for Production, Distribution, and Procurement of Metal Stock

2.2 ASTM Publications

Available from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, www.astm.org.

ASTM E 8 / E 8M	Tension Testing of Metallic Materials
ASTM E 539	Analysis of Titanium Alloys by X-Ray Fluorescence Spectrometry
ASTM E 1409	Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Technique
ASTM E 1447	Determination of Hydrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Thermal Conductivity/Infrared Detection Method
ASTM E 1941	Determination of Carbon in Refractory and Reactive Metals and Their Alloys by Combustion Analysis
ASTM E 2371	Analysis of Titanium and Titanium Alloys by Direct Current Plasma and Inductively Coupled Plasma Atomic Emission Spectrometry

3. TECHNICAL REQUIREMENTS

3.1 Composition

Shall conform to the percentages by weight shown in Table 1; carbon shall be determined in accordance with ASTM E 1941, hydrogen in accordance with ASTM E 1447, oxygen and nitrogen in accordance with ASTM E 1409, and other elements in accordance with ASTM E 539 or ASTM E 2371. Other analytical methods may be used if acceptable to the purchaser.

TABLE 1 - COMPOSITION

Element	min	max
Aluminum	5.50	6.75
Vanadium	3.50	4.50
Iron	--	0.30
Oxygen	--	0.20
Carbon	--	0.08
Nitrogen	--	0.05 (500 ppm)
Hydrogen (3.1.2)	--	0.0125 (125 ppm)
Yttrium (3.1.1)	--	0.005 (50 ppm)
Other Elements, each (3.1.1)	--	0.10
Other Elements, total (3.1.1)	--	0.40
Titanium		remainder

- 3.1.1 Determination not required for routine acceptance.
- 3.1.2 When using ASTM E 1447 for hydrogen determination, sample size may be as large as 0.35 gram.
- 3.1.3 Check Analysis

Composition variations shall meet the applicable requirements of AMS2249.

3.2 Melting Practice

Alloy shall be multiple melted. The first melt shall be made by vacuum consumable electrode, nonconsumable electrode, electron beam cold hearth, or plasma arc cold hearth melting practice. The subsequent melt or melts shall be made under vacuum using vacuum arc remelting (VAR) practice. Alloy additions are not permitted in the final melt cycle.

- 3.2.1 The atmosphere for nonconsumable electrode melting shall be vacuum or shall be argon or helium at an absolute pressure not higher than 1000 mm of mercury.
- 3.2.2 The electrode tip for nonconsumable electrode melting shall be water-cooled copper.

3.3 Condition

The product shall be supplied in the following condition:

3.3.1 Bars

Hot finished with or without subsequent cold reduction, annealed, and descaled. A machined or ground surface is permitted unless prohibited by the purchaser. The product shall be processed to the final thickness/diameter by metallurgical working operations prior to any straightening, dimensional sizing or surface finishing operations. Bar shall not be cut from plate.

3.3.2 forgings

Annealed and descaled.

3.3.3 Stock for Forging

As ordered by the forging manufacturer.

3.4 Heat Treatment

Bars and forgings shall be annealed at 1300 to 1450 °F (704 to 788 °C) holding at the selected temperature within ± 25 °F (± 14 °C) for a time commensurate with section thickness and the heating equipment and procedure used, and cooled at a rate equivalent to an air cool. Pyrometry shall be in accordance with AMS2750

3.5 Properties

The product shall conform to the following requirements:

3.5.1 Bars and forgings

3.5.1.1 Tensile Properties

Shall be as specified in Table 2, determined in accordance with ASTM E 8 / E 8M with the rate of strain maintained set at 0.005 inch/inch/minute (0.005 mm/mm/minute) and maintained within a tolerance of ± 0.002 inch/inch/minute (0.002 mm/mm/minute) through the 0.2% offset yield strain.

3.5.1.1.1 Tensile property requirements apply in both the longitudinal and transverse directions. Transverse tensile properties of Table 2 apply only to product that a test specimen not less than 2.50 inches (63.5 mm) in length can be obtained.

3.5.1.1.2 Specimens for the longitudinal requirements in Table 2 shall be taken with the axis of the specimen within 15 degrees of parallel to the grain flow.

3.5.1.1.3 Yield strength and reduction of area requirements do not apply to product under 0.125 inch (3.18 mm) in nominal diameter.

3.5.1.1.4 Table 2 properties are limited to product with a maximum cross-sectional area of 48 square inches (309.70 cm²).

TABLE 2 - MINIMUM TENSILE PROPERTIES (SEE 8.2)

Nominal Diameter or Least Distance Between Parallel Sides Inches (mm)	Tensile Strength ksi (MPa)	Yield Strength At 0.2% Offset ksi (MPa)	Elongation in 2 Inches (50.8 mm) or 4D, % (3.5.1.1.5)	Reduction of Area % (3.5.1.1.5)
Up to 4.00 (101.50), incl.	130 (896)	120 (827)	10	25
Over 4.00 (101.50) to 6.00 (152.40), incl.	130 (896)	120 (827)	10 [8]	20 [15]

3.5.1.1.5 Values in brackets [] apply to the short transverse direction for short transverse dimensions of 3.00 inches (76.2 mm) or greater.

3.5.1.1.6 Mechanical property requirements for product outside the size range covered by Table 2 and 3.5.1.1.4 shall be agreed upon between purchaser and producer.

3.5.1.2 Microstructure

Shall be that structure resulting from processing within the alpha-beta phase field. Microstructure shall conform to 3.5.1.2.1 or 3.5.1.2.2 (See 8.3).

3.5.1.2.1 Equiaxed and/or elongated primary alpha in a transformed beta matrix with no continuous network of alpha at prior beta grain boundaries.

3.5.1.2.2 Essentially complete field of equiaxed and/or elongated alpha with or without intergranular beta and with no continuous network of alpha at prior beta grain boundaries.

3.5.1.3 Surface Contamination

Except as specified in 3.5.1.3.1, the product shall be free of any oxygen-rich layer (See 8.4), such as alpha case, or other surface contamination, determined by microscopic examination at not lower than 400X magnification or by other method agreed upon by purchaser and vendor.

3.5.1.3.1 When permitted by purchaser, product to be machined all over may have an oxygen-rich layer, provided such layer is removable within the machining allowance on the product.

3.5.1.4 Macrostructure

Product shall be uniform in quality and condition, homogenous, sound, and free from foreign materials and from internal imperfections detrimental to fabrication or performance of parts.

3.5.2 Forging Stock

When a sample of stock is forged to a test coupon and heat treated as in 3.4, specimens taken from the heat treated coupon shall conform to the requirements of 3.5.1.1. If specimens taken from the stock after heat treatment as in 3.4 conform to the requirements of 3.5.1.1, the tests shall be accepted as equivalent to tests of a forged coupon.

3.6 Quality

The product, as received by purchaser, shall be uniform in quality and condition, sound, and free from foreign materials and from imperfections detrimental to usage of the product.

3.6.1 Ultrasonic Inspection

Product 0.500 inch (12.70 mm) to 1.500 inches (38.10 mm) inclusive in nominal thickness, diameter or least distance between parallel sides shall meet Class A1 requirements of AMS2631. Product over 1.500 inches (38.10 mm) in nominal thickness, diameter or least distance between parallel sides shall meet Class A requirements of AMS2631.

3.7 Tolerances

Bars shall conform to all applicable requirements of AMS2241.

3.8 Production, distribution, and procurement of metal stock shall comply with AS6279. This requirement becomes effective October 1, 2015.

4. QUALITY ASSURANCE PROVISIONS

4.1 Responsibility for Inspection

The vendor of the product shall supply all samples for vendor's tests and shall be responsible for the performance of all required tests. Purchaser reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the product conforms to specified requirements.

4.2 Classification of Tests

4.2.1 Acceptance Tests

The following requirements are acceptance tests and shall be performed on each heat or lot as applicable.

4.2.1.1 Composition (3.1) of each heat.

4.2.1.2 Hydrogen content (3.1), tensile properties (3.5.1.1), microstructure (3.5.1.2), surface contamination (3.5.1.3), and macrostructure (3.5.1.4) of each lot of bars and forgings.

4.2.1.3 Ultrasonic quality (3.6.1) of each bar, forging, or forging stock.

4.2.1.4 Tolerances (3.7) of bars.

4.2.2 Periodic Tests

Ability of forging stock (3.5.2) to develop specified properties is a periodic test and shall be performed at a frequency selected by the vendor unless frequency of testing is specified by purchaser.