

Nickel Alloy, Corrosion and Heat-Resistant, Welding Wire
Ni - 18Cr - 2.8Mo - 5.5Cb(Nb) - 0.70Ti - 1.50Al - 10Fe - 9Co - 1W
Consumable Electrode Remelted or Vacuum Induction Melted

(Composition similar to UNS N07818)

RATIONALE

AMS5964 has been reaffirmed to comply with the SAE five-year review policy.

1. SCOPE

1.1 Form

This specification covers a corrosion and heat-resistant nickel alloy in the form of welding wire.

1.2 Application

This wire has been used typically as filler metal for gas-tungsten-arc or gas-metal-arc welding of precipitation-hardenable, corrosion and heat resistant nickel alloys of similar composition where the weld area is required to have strength and corrosion resistance comparable to those of the base metal, but usage is not limited to such applications.

2. APPLICABLE DOCUMENTS

The issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply.

2.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), or www.sae.org.

AMS 2269	Chemical Check Analysis Limits, Nickel, Nickel Alloys, and Cobalt Alloys
AMS 2371	Quality Assurance Sampling and Testing, Corrosion and Heat-Resistant Steels and Alloys, Wrought Products and Forging Stock
AMS 2813	Packaging and Marking of Packages of Welding Wire, Standard Method
AMS 2814	Packaging and Marking of Packages of Welding Wire, Premium Quality
AMS 2816	Identification, Welding Wire, Tab Marking Method
AMS 2819	Identification, Welding Wire, Direct Color Code System
ARP1876	Weldability Test for Weld Filler Metal Wire
ARP4926	Alloy Verification and Chemical Composition Inspection of Welding Wire

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2012 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)
Tel: +1 724-776-4970 (outside USA)
Fax: 724-776-0790
Email: CustomerService@sae.org
<http://www.sae.org>

SAE WEB ADDRESS:

SAE values your input. To provide feedback on this Technical Report, please visit
<http://www.sae.org/technical/standards/AMS5964>

2.2 ASTM Publications

Available from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, or www.astm.org.

ASTM E 354 Chemical Analysis of High-Temperature, Electrical, Magnetic, and Other Similar Iron, Nickel, and Cobalt Alloys

3. TECHNICAL REQUIREMENTS

3.1 Composition

Wire composition shall conform to the percentages by weight shown in Table 1, determined by wet chemical methods in accordance with ASTM E 354, by spectrochemical methods, or by other analytical methods acceptable to purchaser.

TABLE 1 - COMPOSITION

Element	min	max
Carbon (3.1.1.1)	0.01	0.05
Manganese	--	0.35
Silicon	--	0.35
Phosphorus	0.004	0.020
Sulfur	--	0.0025
Chromium	17.00	21.00
Nickel	remainder	
Molybdenum	2.50	3.10
Columbium (Niobium)	5.20	5.80
Titanium	0.50	1.00
Aluminum	1.20	1.70
Cobalt	8.00	10.00
Tungsten	0.80	1.40
Boron	0.003	0.008
Copper	--	0.30
Lead	--	0.0005 (5 ppm)
Bismuth	--	0.00003 (0.3 ppm)
Selenium	--	0.0003 (3 ppm)
Iron	8.00	10.00

3.1.1 Chemical analysis of initial ingot, bar, or rod stock before drawing is acceptable provided the processes used for drawing or rolling, annealing, and cleaning are controlled to ensure continued conformance to composition requirements.

3.1.1.1 Carbon shall also be determined periodically on finished wire (see 4.2.2).

3.1.2 Check Analysis

Composition variations shall meet the applicable requirements of AMS 2269.

3.2 Melting Practice

Alloy shall be multiple melted using consumable electrode practice in the remelt cycle or shall be induction melted under vacuum. If consumable electrode remelting is not performed in vacuum, electrodes which have been produced by vacuum induction melting shall be used for remelting.

3.3 Condition

Cold worked, bright finish, in a temper and with a surface finish which will provide proper feeding of the wire in machine welding equipment.

3.4 Fabrication

- 3.4.1 Wire shall be formed from rod or bar descaled by a process which does not affect the composition of the wire. Surface irregularities inherent with a forming process that does not tear the wire surfaces are acceptable provided the wire conforms to the tolerances of 3.7.
- 3.4.2 Butt welding is permissible provided both ends to be joined are alloy verified using a method capable of distinguishing the alloy from all other alloys processed in the facility, or the repair is made at the wire processing station. The butt weld shall not interfere with uniform, uninterrupted feeding of the wire in machine welding equipment.
- 3.4.3 In-process annealing, if required, between cold rolling or drawing operations, shall be performed in vacuum or protective atmospheres to ensure freedom from surface oxidation and absorption of other extraneous elements.
- 3.4.4 Residual elements, drawing compounds, oxides, dirt, oil, dissolved gasses, and other foreign materials picked up during wire processing that can adversely affect the welding characteristics, the operation of the equipment, or the properties of the weld metal, shall be removed by cleaning processes that will neither result in pitting nor cause gas absorption by the wire or deposition of substances harmful to welding operations.

3.5 Properties

Wire shall conform to the following requirements:

3.5.1 Weldability

Melted wire shall flow smoothly and evenly during welding and shall produce acceptable welds determined by a procedure acceptable to purchaser. ARP1876 may be used to resolve disputes.

3.5.2 Spooled Wire

Shall conform to 3.5.2.1 and 3.5.2.2.

3.5.2.1 Cast

Wire, wound on standard 12-inch (305-mm) diameter spools, shall have imparted to it a curvature such that a specimen sufficient in length to form one loop with a 1-inch (25-mm) overlap, when cut from the spool and laid on a flat surface, shall form a circle 15 to 50 inches (381 to 1270-mm) in diameter.

3.5.2.2 Helix

The specimen on which cast was determined, when laid on a flat surface and measured between adjacent turns, shall show a vertical separation not greater than 1-inch (25-mm).

3.6 Quality

Wire, as received by purchaser, shall be uniform in quality and condition, sound, and free from foreign materials and from imperfections detrimental to welding operations, operation of welding equipment, or properties of the deposited weld metal.

3.7 Sizes and Tolerances

Wire shall be supplied in the sizes and to the tolerances shown in 3.7.1 and 3.7.2.

3.7.1 Diameter

Shall be as shown in Table 2.

TABLE 2A - SIZES AND DIAMETER TOLERANCES, INCH/POUND UNITS

Form	Nominal Diameter Inch	Tolerance	
		Inch Plus	Inch Minus
Cut Lengths	0.030, 0.035, 0.045	0.001	0.002
Cut Lengths	0.062, 0.078, 0.094, 0.125, 0.156, 0.187	0.002	0.002
Spools	0.007, 0.010, 0.015	0.0005	0.0005
Spools	0.020, 0.030, 0.035, 0.045, 0.062	0.001	0.002
Spools	0.078, 0.094	0.002	0.002

TABLE 2B - SIZES AND DIAMETER TOLERANCES, SI UNITS

Form	Nominal Diameter Millimeters	Tolerance	
		Millimeter Plus	Millimeter Minus
Cut Lengths	0.76, 0.89, 1.14	0.025	0.05
Cut Lengths	1.57, 1.98, 2.39, 3.18, 3.96, 4.75	0.05	0.05
Spools	0.18, 0.25, 0.38	0.013	0.013
Spools	0.51, 0.76, 0.89, 1.14, 1.57	0.025	0.05
Spools	1.98, 2.39	0.05	0.05

3.7.2 Length

Cut lengths shall be furnished in 18, 27, or 36-inch (457, 686, or 914-mm) lengths, as ordered, and shall not vary more than +0, -0.5 inch (+0, -13-mm) from the length ordered.

4. QUALITY ASSURANCE PROVISIONS

4.1 Responsibility for Inspection

The vendor of wire shall supply all samples for vendor's tests and shall be responsible for the performance of all required tests. Purchaser reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the wire conforms to specified requirements.

4.2 Classification of Tests

4.2.1 Acceptance Tests

Composition (3.1), sizes and tolerances (3.7), and alloy verification (5.2.1) are acceptance tests and shall be performed on each heat or lot as applicable.

4.2.2 Periodic Tests

Determination of carbon on finished wire (3.1.1.1), weldability (3.5.1), cast (3.5.2.1), and helix (3.5.2.2) are periodic tests and shall be performed at a frequency selected by the vendor unless frequency of testing is specified by purchaser.

4.3 Sampling and Testing

Shall be in accordance with AMS 2371.