

Copper-Beryllium Alloy, Bars, Rods, Shapes, and Forgings

98Cu - 1.9Be

Solution Heat Treated TB00 (A)

(Composition similar to UNS C17200)

RATIONALE

AMS4650M revises requirements for chemical analysis (3.1) and Heat Treatment (3.3), and is a Five Year Review and update of this specification.

1. SCOPE

This specification covers a copper-beryllium alloy in the form of bars, rods, shapes, and forgings.

1.1 Application

These products have been used typically for parts after aging requiring a combination of high strength, good wear resistance, and corrosion resistance and where electrical conductivity or low magnetic susceptibility may be important, but usage is not limited to such applications.

1.2 Safety - Hazardous Materials

While the materials, methods, applications, and processes described or referenced in this specification may involve the use of hazardous materials, this specification does not address the hazards which may be involved in such use. It is the sole responsibility of the user to ensure familiarity with the safe and proper use of any hazardous materials and to take necessary precautionary measures to ensure the health and safety of all personnel involved.

2. APPLICABLE DOCUMENTS

The issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply.

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2012 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)
Tel: +1 724-776-4970 (outside USA)
Fax: 724-776-0790
Email: CustomerService@sae.org
<http://www.sae.org>

SAE WEB ADDRESS:

**SAE values your input. To provide feedback
on this Technical Report, please visit
<http://www.sae.org/technical/standards/AMS4650M>**

2.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), www.sae.org.

AMS2221 Tolerances, Copper and Copper Alloy Bars and Rods

AMS2750 Pyrometry

AMS2808 Identification, forgings

2.2 ASTM Publications

Available from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, www.astm.org.

ASTM B 249/B 249M Specification for General Requirements for Wrought Copper and Copper-Alloy Rod, Bar, Shapes, and forgings

ASTM E 3 Practice for Preparation of Metallographic Specimens

ASTM E 8/E 8M Tension Testing of Metallic Materials

ASTM E 18 Rockwell Hardness of Metallic Materials

ASTM E 112 Determining Average Grain Size

ASTM E 478 Chemical Analysis of Copper Alloys

3. TECHNICAL REQUIREMENTS

3.1 Composition

Shall conform to the percentages by weight shown in Table 1, determined by wet chemical methods in accordance with ASTM E 478, by spectrochemical methods, or by other analytical methods acceptable to purchaser.

TABLE 1 - COMPOSITION

Element	min	max
Beryllium	1.80	2.00
Nickel plus Cobalt	0.20	--
Nickel plus Cobalt plus Iron	--	0.6
Aluminum	--	0.20
Silicon	--	0.20
Copper (3.1.2)	remainder	
Sum of Named Elements (3.1.3)	99.5	--

3.1.1 These composition limits do not preclude the presence of other elements. Limits may be established and analysis required for unnamed elements by agreement between the manufacturer or supplier and purchaser.

3.1.2 Copper may be reported as "remainder", or as the difference between the sum of results for all elements and 100%, or as the result of direct analysis.

3.1.3 When all the elements in the table are analyzed, the sum shall be 99.5% minimum, but such determination is not required for routine acceptance of each lot.

3.2 Condition

The product shall be supplied in the following condition:

3.2.1 Bars, Rods, and Shapes

Hot or cold worked to size, solution heat treated, and cold straightened if necessary.

3.2.1.1 The cross-sectional area of bars, rods, and shapes shall be less than one-half that of the ingots from which they are formed; i.e., bars, rods, and shapes shall have been subjected to over 50% reduction of area during formation.

3.2.2 forgings

Solution heat treated.

3.2.3 Stock for Forging

As ordered by the forging manufacturer.

3.3 Heat Treatment

Product shall be solution heat treated by heating within the range 1400 to 1475 °F (760 to 802 °C), holding at heat for a minimum time of 30 minutes, and quenching in water. Pyrometry shall be in accordance with AMS2750.

3.4 Properties

The product shall conform to the following requirements:

3.4.1 As Solution Heat Treated (TB00)

3.4.1.1 Bars, Rods, and Shapes

3.4.1.1.1 Tensile Properties

Shall be as shown in Table 2, determined in accordance with ASTM E 8/E 8M; elongation requirement applies only to product over 0.311 inch (7.90 mm) in nominal diameter or distance between parallel sides.

TABLE 2 - TENSILE PROPERTIES

Property	Value
Tensile Strength, maximum	85.0 ksi (586 MPa)
Elongation in 2 inches (50.8 mm), minimum	35%

3.4.1.1.2 Maximum Average Grain Size

Shall be not larger than shown in Table 3, determined in accordance with ASTM E 112. Product may be precipitation heat treated as in 3.4.2 before examination.

TABLE 3 - MAXIMUM AVERAGE GRAIN SIZE

Nominal Diameter or Least Distance Between Parallel Sides Inches		Nominal Diameter or Least Distance Between Parallel Sides Millimeters		Maximum Grain Size Millimeter
Up	to 1.000, excl	Up	to 25.40, excl	0.050
Over	1.000 to 1.500, excl	Over	25.40 to 38.10, excl	0.075
Over	1.500 to 2.000, excl	Over	38.10 to 50.80, excl	0.100
Over	2.000 to 3.000 excl	Over	50.80 to 76.20 excl	0.125

3.4.1.2 Forgings

3.4.1.2.1 Hardness

Shall be not higher than 85 HRB, or equivalent, determined in accordance with ASTM E 18.

3.4.1.2.2 Average Grain Size

Shall be as agreed upon by purchaser and vendor, determined in accordance with ASTM E 112.

3.4.1.2.3 Average Grain Flow

Grain flow of die forgings, except in areas which contain flash-line end grain, shall follow the general contour of the forgings showing no evidence of re-entrant grain flow.

3.4.1.3 Bar, Rod, Shapes, and Forgings

3.4.1.3.1 Microstructure

Product shall contain not more than 6% beta phase constituent, determined at 100X magnification on specimens prepared in accordance with ASTM E 3.

3.4.2 After Precipitation Heat Treatment

Bars, rods, shapes, and forgings shall have the following properties after being precipitation heat treated by heating within the range 600 to 675 °F (316 to 358 °C), holding at heat for 3 hours \pm 0.25, and cooling in air.

3.4.2.1 Bars, Rods, and Shapes

3.4.2.1.1 Tensile Properties

Shall be as shown in Table 4, determined in accordance with ASTM E 8/E 8M.

TABLE 4 - MINIMUM TENSILE PROPERTIES

Property	Value
Tensile Strength	165 ksi (1138 MPa)
Yield Strength at 0.2% Offset	140 ksi (965 MPa)
Elongation in 2 inches (50.8 mm)	3%

3.4.2.1.2 Hardness

Bars, rods, and shapes 0.188 inch (4.78 mm) and over in nominal diameter or least distance between parallel sides shall have hardness not lower than 36 HRC, or equivalent, determined in accordance with ASTM E 18. The product shall not be rejected on the basis of hardness if the tensile properties of 3.4.2.1.1 are acceptable, determined on product taken from the same sample as that with nonconforming hardness or from another sample with similar nonconforming hardness.

3.4.2.2 forgings

3.4.2.2.1 Hardness

Shall be not lower than 36 HRC, or equivalent, determined in accordance with ASTM E 18.

3.4.3 After Re-Solution and Precipitation Heat Treatment

Bars, rods, shapes, and forgings shall have hardness not lower than 36 HRC, or equivalent, determined in accordance with ASTM E 18, after being re-solution heat treated in accordance with 3.3 and precipitation heat treated in accordance with 3.4.2.

3.4.4 Forging Stock

As agreed upon by purchaser and vendor.

3.5 Quality

Product, as received by purchaser, shall be uniform in quality and condition, sound, and free from foreign materials and from imperfections detrimental to usage of the product.

3.6 Tolerances

Bars and rods shall conform to AMS2221 as applicable to refractory alloys.

4. QUALITY ASSURANCE PROVISIONS

4.1 Responsibility for Inspection

The vendor of the product shall supply all samples for vendor's tests and shall be responsible for the performance of all required tests. Purchaser reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the product conforms to specified requirements.

4.2 Classification of Tests

4.2.1 Acceptance Tests

Composition (3.1), tensile properties of bars, rods, and shapes in solution heat treated condition (3.4.1.1.1), grain size of bars, rods, and shapes (3.4.1.1.2), microstructure of bars, rods, shapes, and forgings (3.4.1.3.1), forging grain size as agreed upon (3.4.1.2.2), tensile properties of bars, rods, and shapes after precipitation heat treatment (3.4.2.1.1), and hardness of forgings after re-solution and precipitation heat treatment (3.4.3) are acceptance tests and shall be performed on each lot.