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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that
are members of ISO or IEC participate in the development of International Standards through

technical committees established by the respective organization to deal with particular fields

international organizations, governmental and non-governmental, in liaison with ISO and IEC{.a
take part in the work.

The procedures used to develop this document and those intended for its further maintenance :
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria' needed
the different types of document should be noted. This document was.drafted in accordance with {
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subj
of patent rights. ISO and IEC shall not be held responsible for identifying-any or all such pat
rights. Details of any patent rights identified during the development oﬁj:-he document will be in {

Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents) or the J|EC

list of patent declarations received (see patents.iec.ch):

7N
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¥

Any trade name used in this document is information given for the convenience of users and does not
)

constitute an endorsement.

\

For an explanation of the voluntary nature of standarfd; the meaning of ISO specific terms a
expressions related to conformity assessment, as wel as information about I1SO's adherence to f{
World Trade Organization (WTO) principles in the T::AEKh'nical Barriers to Trade (TBT), see www.is0.0}
iso/foreword.html. RN
\ 4

This document was prepared /by Joint Teghiical Committee |ISO/IEC JTC 1, Information technolo
Subcommittee SC 7, Software and systems iigg'ineering.

Alist of all parts in the ISO/IEC/IEEE\_29:119 series can be found on the ISO website.

Any feedback or.questions on this. document should bedirected to the user’s national standards body.

complete listing-of these bodies¢an be found at www.iso.org/members.html,
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Introduction

The testing of traditional systems is well-understood, but Al-based systems, which are becoming more
prevalent and critical to our daily lives, introduce new challenges. This document has been created to
introduce Al-based systems and provide guidelines on how they might be tested.

Annex A provides an introduction to machine learning.

Thlis document is primarily provided for those testers who are new to Al-based systems, but it can also
bel|useful for more experienced testers and other stakeholders working on the development and testing
of Al-based systems.

As|a Technical Report, this document contains data of a different kind from thatnormally published as
an|International Standard or Technical Specification, such as data on the “state of the art”.
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Software and systems engineering — Software testing —

Part 11:

— Guidelines on the testing of Al-based systems

1 Scope

This document provides an introduction to Al-based systems. These systems are typically comp

ex

(e.g. deep neural nets), are sometimes based on big data, can be poorly specified*and can be n¢n-

deterministic, which creates new challenges and opportunities for testing them.

This document explains those characteristics which are specific to Al-basedsystems and explains {
corresponding difficulties of specifying the acceptance criteria for such systems.

This document presents the challenges of testing Al-based systems,(the main challenge being the t

he

St

oracle problem, whereby testers find it difficult to-determine expect’ed results for testing and therefgre

whether tests have passed or failed. It covers testing of these systems across the life cycle and giy
guidelines on how Al-based systems in general can be tested usﬂng black-box approaches and introdu
white-box testing specifically for neural networks. It dechbes options for the test environments a
test scenarios used for testing Al-based systems.

In this document an Al-based system is a system thaPiticludes at least one Al component.

.
\,

. \
2 Normative references \j.,
There are no normative references in thisiocument.

\\)

“«

3 Terms, definitions and abbreviated terms
(s
3.1 Termsand definition§

For the purposes of thisiddocument, the following terms and definitions apply.
[SO.and IEC maintagn' terminological databases for use in standardization at the following addresses

— ISO Online-browsing platform: available at https://www.iso.org/obp

— IECAElectropedia: available at http://www.electropedia.org/

3.14
A/B'testing
split-run testing

hes
fes
nd

statistical testing approach that allows testers to determine which of two systems or compone

ts

performs better

3.1.2
accuracy

<machine learning (3.1.43)> performance metric used to evaluate a classifier (3.1.21), which measures

the proportion of classifications (3.1.20) predictions (3.1.56) that were correct

© ISO/IEC 2020 - All rights reserved
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3.1.3

activation function

transfer function

<neural network (3.1.48)> formula associated with a node in a neural network that determines the
output of the node (activation value (3.1.4)) from the inputs to the neuron

3.14

acl—tvynl-i onvalua

oaTToTI-voaror

<npural network (3.1.48)> output of an activation function (3.1.3) of a node in a neural network

3.1.5

adpptability

abllity of a system to react to changes in its environment in order to continue meeting both funetional
anf non-functional requirements

3.1.6
adversarial attack
deliberate use of adversarial examples (3.1.7) to cause a ML model (3:1.46) to fail b

2
Note 1 to entry: Typically targets ML models in the form of a neural network (3.1.48). %
3.1.7 99
adversarial example W

input to an ML model (3.1.46) created by applying small perturbatlons to a working example that results

in fthe model outputting an incorrect result with high-confidence
\

Note 1 to entry: Typically applies to ML models in/the form of a neu(ls(l network (3.1.48).
)

adversarial testing C

3.19 >

Alibased system aF

system including one‘or more components implementing Al (3.1.13)
3.1.10 |

Alleffect "\

algerithm

ML algorithm

<machine learning (3.1.43)> algorithm used to create an ML model (3.1.46) from the training data
(3.1.80)

EXAMPLE ML algorithms include linear regression, logistic regression, decision tree (3.1.25), SVM, Naive
Bayes, kNN, K-means and random forest.

2 © ISO/IEC 2020 - All rights reserved
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3.1.13

artificial intelligence

Al

capability of an engineered system to acquire, process and apply knowledge and skills

3.1.14
autonomous system

cuctam canahla r\Ftlnr\v]rihn without husnaan tntaroantion for cnctatnnd narindc

Ty o ceT Coa pToTeToT OTISTIITS vy reit ottt oo T i e e v CIreror o Soota e p oS

3.1.15
autonomy
ability of a system to work for sustained periods without human intervention

3.1.16
back-to-back testing
differential testing

approach to testing whereby an alternative version of the system is used as apseudo-oracle (3.1.59) to

generate expected results for comparison from the same test.inputs b

RN
EXAMPLE The pseudo-oracle may be a system that already exists, a systeﬁl developed by an independp
team or a system implemented using a different programming language. (-}
3.1.17 X\
backward propagation g

nt

<neural network (3.1.48)> method used in-artificial neural ﬂetworks to determine the weights to|be

used on the network connections based on‘the computed érror at the output of the network

N
Note 1 to entry: It is used to train deep neural networks (33327).

.
\,

3.1.18 -
benchmark suite Q \

collection of benchmarks,where a benchmartk is a set of tests used to compare the performance
alternatives \

)
K

S\

3.1.19 A
bias L

of

<machine learning (3.1.43)> medsure of the distanee between the predicted value provided by the ML

model (3.1.46) and a desired fa.lr prediction (3.1.56)

3.1.20 ’

classification “\

<machine learning é.’l.43)> machine learning function that predicts the output class for a given input
3.1.21

classifier

<machinelearning (3.1.43)> ML model (3.1.46) used for classification (3.1.20)

3.1.22
clustering

grouping of a set of objects such that objects in the same group (i.e. a cluster) are more similar to egch

other than to those in other clusters

3.1.23

combinatorial testing

black-box test design technique in which test cases are designed to execute specific combinations
values of several parameters (3.1.53)

EXAMPLE Pairwise testing (3.1.52), all combinations testing, each choice testing, base choice testing.

© ISO/IEC 2020 - All rights reserved
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3.1.24

confusion matrix

table used to describe the performance of a classifier (3.1.21) on a set of test data (3.1.75) for which the
true and false values are known

3.1.25
decision tree

<maehinrelearhring 4 HeerHsed-learnineamede 4.6 ab2R 781 2 h i faranca Q

byl|traversing one or more tree-like structures

3.1.26

delep learning

approach to creating rich hierarchical representations through the training of neural networks-(3.1.48)
with one or more hidden layers

Note 1 to entry: Deep learning uses multi-layered networks of simple computing units (or “nemrons”). In these
nefiral networks each unit combines a set of input values to produce an outputvalue, which in‘turn is passed on
to pther neurons downstream.

v
RN
3.1.27 @
deep neural net A~
nefiral network (3.1.48) with more than two layers &
3.1.28 : _;,'

N S

deterministic system
sy$tem which, given a particular set of inputs ahd-starting statefwvill always produce the same set of
oufputs and final state N

W

3.1.29 N
dijtributional shift &
dataset shift Z
<machine learning (3.1.43)> distance between thé\l‘raining data (3.1.80) distribution and the desired
data distribution 3 X
LY \)
Note 1 to entry: The effect of distributional shift often increases as-the users’ interaction with the system (and so
th¢ desired data distribution)'changes over_Eiha‘e.

3.1.30 N
drift . O
degradation »

N
staleness

<machine learning (3.1.43)€Qc‘}‘1anges to ML model (3.1.46) behaviour that occur over time

Note 1.to entry: Theseichanges typically make predictions (3.1.56) less accurate and may require the model to be
re-trained with new data.

3.1.31
explainability
<All (3.1.13)> level of understanding how the Al-based system (3.1.9) came up with a given result

3.1.32

exploratory testing

experience-based testing in which the tester spontaneously designs and executes tests based on the
tester's existing relevant knowledge, prior exploration of the test item (including the results of previous
tests), and heuristic "rules of thumb" regarding common software behaviours and types of failure

Note 1 to entry: Exploratory testing hunts for hidden properties (including hidden behaviours) that, while quite

possibly benign by themselves, could interfere with other properties of the software under test, and so constitute
arisk that the software will fail.

4 © ISO/IEC 2020 - All rights reserved
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3.1.33

F1-score

<machine learning (3.1.43)> performance metric used to evaluate a classifier (3.1.21), which provide
balance (the harmonic average) between recall (3.1.61) and precision (3.1.55)

3.1.34
false negative

mcorroactranarting of
t

Sa

A £
o TCCTT o poTrtTg oo or

Note 1 to entry: This is also known as a Type Il error.

EXAMPLE The referee awards an offside when it was a goal and so reports a‘failure to score argoal whe
goal was scored.

3.1.35
false positive
incorrect reporting of a pass when in reality it is a failure

Note 1 to entry: This is also known as a Type I error. vV,
RN
X\
EXAMPLE The referee awards a goal that was offside and so should nothave been awarded.
3.1.36 K
feature engineering &Y%
feature selection ",

<machine learning (3.1.43)> activity in whichthose attribufes in the raw data that best represent {

underlying relationships that should appear in the model [3.1.46) are identified for use in the train
data (3.1.80) ‘\,

3.1.37 RN

flexibility \\y

ability of a system to work incontexts outSIdQltS initial specification (i.e. change its behaviour accord
to its actual situation to satisfy its ob]ectwges)

\)

3.1.38
fuzz testing

software testing\approach in w.h.lch high volumes of random (or near random) data, called fuzz, :
used to generate inputs to the‘ felst item

p

3.1.39

general Al NS

strong Al N

AT(3.1.13) that exhibits intelligent behaviour comparable to a human across the full range of cognit
abilities

3.1.40

graphical'processing unit

GPU

application-specific integrated circuit (ASIC) specialized for display functions such as rendering imag

he

ng

\re

ve

es

Note 1 to entry: GPUS are de51gned for parallel data processmg oflmages with a single function, but this para

rlel

3.1.41

hyperparameter

<neural network (3.1.48)> variable used to define the structure of a neural network and how it is trained

Note 1 to entry: Typically, hyperparameters are set by the developer of the model (3.1.46) and may also
referred to as a tuning parameter (3.1.53).

© ISO/IEC 2020 - All rights reserved
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3.1.42
interpretability
<Al (3.1.13)> level of understanding how the underlying (Al) technology works

3.1.43
machine learning
ML

precess-using-computational-techhiquesto-enable-systemsto-learntromdataor-experienee

3.1.44

metamorphic relation

depcription of how a change in the test inputs from the source test case to the follow-up test case affects
a dhange (or not) in the expected outputs from the source test case to the follow-up test case

3.1.45

metamorphic testing

teqting where the expected results are not based on the specification butare instead extrapolated from

previous actual results b
RN

3.1.46 ¢

model A

ML model \J

<machine learning (3.1.43)> output of a ML algorithm (3.1.12) trainéd) ‘with a training dataset that

geherates predictions (3.1.56) using patterns in the input data "

3.1.47 Q

nagrrow Al N
wdak Al e

Al|(3.1.13) focused on a single well-defined task to address‘a specific problem
\ 4

4

3.1.48 R
neural network X
artificial neural network D
nefwork of primitive processing elements connected by weighted links with adjustable weights, in
wllich each element produces a value by applying a nonlinear function to its input values, and transmits

it §o other elements or presents it as améutput value
L

Note 1 to entry: Whereas some neural neﬁvorks are intended to simulate the functioning of neurons in the nervous

sy4tem, most neural networks arewsed-in artificial intelligence (3.1.13) as realizations of the connectionist model
(3.L.46). N

Note 2 to-entry: Examples ognbnlinear functions are a threshold function, a sigmoid function, and a polynomial
function,

[SOURCE: ISO/IEG-2382:2015, 2120625, modified — The admitted term "neural net" has been removed;
nofes 3 to 5 to entry have been removed.]

3.1.49

neuron.coverage

propottion of activated neurons divided by the total number of neurons in the neural network (3.1.48)
(normally expressed as a percentage) for a set of tests

Note 1 to entry: A neuron is considered to be activated if its activation value (3.1.4) exceeds zero.

3.1.50

non-deterministic system

system which, given a particular set of inputs and starting state, will not always produce the same set
of outputs and final state

6 © ISO/IEC 2020 - All rights reserved
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3.1.51

overfitting

<machine learning (3.1.43)> generation of a ML model (3.1.46) that corresponds too closely to the
training data (3.1.80), resulting in a model that finds it difficult to generalize to new data

3.1.52
pairwise testing

hlaclk baow tact dacign +achniann 10 urlmnln tact cacnc Avrn daciagnad 0 Avacnta Al noccihila I‘]I(‘r‘v’\te

e A A C e A A Ry Y s S A 2 s T A A A e o Tt o oo T O T T I T Ot O EX T Tt P oo SToTC—ar5tr

combinations of each pair of input parameters (3.1.53)

Note 1 to entry: Pairwise testing is the most popular form of combinatorial testing (3:1.23).

3.1.53

parameter
<machine learning (3.1.43)> parts of the model (3.1.46) that are learnt from applying the training data
(3.1.80) to the algorithm (3.1.12)

EXAMPLE Learnt weights in a neural net. )
%
Note 1 to entry: Typically, parameters are not set by the developer of the model., N
3.1.54 A
performance metrics :
<machine learning (3.1.43)> metrics used to evaluate ML models {3 1.46) that are used for classificatjon

(3.1.20) <
~
EXAMPLE Typical metrics include accuraey (3.1.2), prec\isio% (3.1.55), recall (3.1.61) and F1-score (3.1.33)
3.1.55 N
prec1s10n \

<machine learning (3.1.43)> performance met;rlé used to evaluate a classifier (3.1.21), which measufes
the proportion of predicted positives that w€re correct

3.1.56 %) X

prediction

<machine learning (3.1.43)> machjne learning function that results in a predicted target value fof a
given input Q¥

EXAMPLE Includes classiﬁgatwn (3.1.20) and regression (3.1.62) functions.

3.1.57 N
pre-processing \&

<machine learning,(3:1.43)> part of the ML workflow that transforms raw data into a state ready for use
by the ML algorithm (3.1.12) to create the ML model (3.1.46)

Note 1 to efitry: Pre-processing can include analysis, normalization, filtering, reformatting, imputation, remojval
of outliefs-and duplicates, and ensuring the completeness of the dataset.

3.1.58

probabilistic system
system whose behaviour is described in terms of probabilities, such that its outputs cannot be perfedtly
predicted

3.1.59

pseudo-oracle

derived test oracle

independently derived variant of the test item used to generate results, which are compared with the
results of the original test item based on the same test inputs

Note 1 to entry: Pseudo-oracles are a useful alternative when traditional test oracles (3.1.76) are not available.

© ISO/IEC 2020 - All rights reserved 7
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3.1.60

reasoning technique

<Al (3.1.13)> form of Al that generates conclusions from available information using logical techniques,
such as deduction and induction

3.1.61
recall

sepsitivity
<machine learning (3.1.43)> performance metric used to evaluate a classifier (3.1.21), which measures
th¢ proportion of actual positives that were predicted correctly

3.1.62

regression

<machine learning (3.1.43)> machine learning function that results in a numerical or continuous’output
value for a given input

3.1.63
regulatory standard
stgndard promulgated by a regulatory agency ~

3.1.64 A

rejnforcement learning 2

<mpachine learning (3.1.43)> task of building a ML model (3.1.46) usmg a process of trial and reward to
achieve an objective "y

supervised Iearmng (3.1.74) plus training on unlabelled inputs g\% thered during the operation phase of the Al
(3.JL.13) system. Each time the model makes a prediction (3.1. 56 reward is calculated, and further trials are

degigner.

objective

3.1.66 G

ropot

programmed actuatedmechanism with a degree of autonomy (3.1.15), moving within its environment,
to perform intend€dtasks

Note 1 to entry: Arobot includes the control system and interface of the control system.

Note 2 to entry: The classification (3.1.20) of robot into industrial robot or service robot is done according to its
intended application.

3.1.67

safety
expectation that a system does not, under defined conditions, lead to a state in which human life, health,
property, or the environment is endangered

[SOURCE: ISO/IEC/IEEE 12207:2017, 3.1.48]

3.1.68

search algorithm

<Al (3.1.13)> algorithm (3.1.12) that systematically visits a subset of all possible states (or structures)
until the goal state (or structure) is reached
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3.1.69
self-learning system
adaptive system that changes its behaviour based on learning from the practice of trial and error

3.1.70
sign change coverage

proportion of neurons activated with both positive and negative activation values (3.1.4) divided by the

total nunmabar of ReUFoRSHa H«n nnurnl nnhnnrb (21 49 (normally avnraccad ac 4 maorcantaga) £for o

set

Toto T IO C T o I U T oo It e T oIt VO (o 1O (ItoT Tt Y CAPT TSt Pt eIt st ToT ™

of tests

Note 1 to entry: An activation value of zero is considered to be a negative activation.value.

3.1.71

sign-sign coverage
coverage level achieved if by changing the sign of each neuron it can‘be shown to individually cause g
neuron in the next layer to change sign while all other neurons in the next layer stay the same (i.e. th
do not change sign)

3.1.72 &

simulator %

<testing> device, computer program or system used during testlng,.whlch behaves or operates lik
given system when provided with a set of controlledinputs. \ X

3.1.73 o]

software agent
digital entity that perceives its environment and takes actions that maximize its chance of successfy
achieving its goals ‘\>

3.1.74 N
supervised learning Ny
<machine learning (3.1.43)> task of learning {function that mapsan input to an output based on label
example input-output pairs X

3.1.75 N
test data

<machine learning (3.1.43)> indepé&ndent dataset(used to provide an unbiased evaluation of the fir
tuned ML model (3.1.46) \\\'t‘

3.1.76 Z
test oracle N

source of informat'enf‘or determining whether a test has passed or failed

Note 1 to entry:; The'test oracle is often a specification used to generate expected results for individual test cas
but other sourtes’may be used, such as comparing actual results with those of another similar program or syst
or asking ahliman expert.

3.1.77
testoracle problem
challenge of determining whether a test has passed or failed for a given set of test inputs and state

3.1.78

ne
ey

ed

al,

es,

test scenario
situation or setting for a test item used as the basis for generating test cases

3.1.79
threshold coverage
<neural network (3.1.48)> proportion of neurons exceeding a threshold activation value (3.1.4) divided

by

the total number of neurons in the neural network (normally expressed as a percentage) for a set of tests

Note 1 to entry: A threshold activation value between 0 and 1 is chosen as the threshold value.
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3.1.80
training data
<machine learning (3.1.43)> dataset used to train an ML model (3.1.46)

3.1.81
transparency
<Al (3.1.13)> level of accessibility to the algorithm (3.1.12) and data used by the Al-based system (3.1.9)

3.1.82
trye negative
correct reporting of a failure when it is a failure

EXAMPLE The referee correctly awards an offside and so reports a failure to score'a'goal.

3.1.83
trye positive
correct reporting of a pass when it is a pass

EXAMPLE The referee correctly awards a goal. X vV,
X\

3.1.84 C

u derfitting %)

vajue change coverage >

proportion of neurons activated whe\re their activation values (3.1.4) differ by more than a change
anjount divided by the total numbérof neurons in the neural network (3.1.48) (normally expressed as a
percentage) for a.set of tests

\

3.1.88 G
viftual test environmeént
teqt environment whére one or more parts are digitally simulated

3.2 Abbreviated terms

ASIC application-specific integrated circuit

ARl application programming interface

CEN European Committee for Standardization
CI/CD continuous integration and continuous delivery
CPU central processing unit

CENELEC  European Committee for Electrotechnical Standardization

DNN deep neural network
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ETSI European Telecommunications Standards Institute
GDPR General Data Protection Regulation

IEEE Institute of Electrical and Electronics Engineers
[oT internet of things

RAM random access memory

SOTIF safety of the intended functionality

4 Introduction to Al and testing

4.1 Overview of Al and testing

This clause introduces artificial intelligence (Al) and then(explains testingin the context of Al-baded
systems. S

N

Artificial intelligence is initially defined, typical Al-uses cases ?lﬁe" provided, and figures for the
expanding market for Al-based systems are presented. The range oftechnologies used to implement Al-
based systems are listed and options for the hardware and develgpment frameworks used to implemgnt
these systems are provided. The implementation levels of natreiv Al and general Al are then comparpd.

RS
The importance of testing for Al-based systems is thén Tntroduced, and the use of such systems| in
safety-related domains is considered-before the use qf\gtandards for Al-based systems is introduced

4.2 Artificial intelligence (AI) &

Cad

4.2.1 Definition of ‘artificial intelligen\i:é’

p )
To understand the term ‘artificial intel]‘l)gence’, ‘intelligence’ first needs to be understood. The Oxfgrd
Dictionaries providea suitable def{nition:

the ability to-acquire and apj;l} knowledge and skills
\

Artificial‘intelligence (AI)/is"intelligence that does not occur naturally, i.e. as exhibited by humans and
animals: The following‘({lefinition captures this concept:

capability of arfehjgineered system to acquire, process and apply knowledge and skills
Artificial intelligence can also be considered as a discipline, leading to a second definition:

discipline which studies the engineering of systems with the capability to acquire, process and apply
knewledge and skills (ISO/IEC 22989)

ISQAEC 2298911 introduces the concepts of Al and includes a comprehensive terminology.

In practice, people’s understanding of what is meant by Al changes over time - this is often known|as
tho A1 Affn tr?] A cirict dntapaneat i ALl o S oo n dafi i o oo o

H srallaxazr vzl ot xazn yazonld ooy oo oo |er
CIIC—7 I CTICT T 1L SCT ICT I CCT PTCTOtIOTT OT I a DUV C O CTITITCIOTTS HIIay arto vy vvitac vy o vy ouro rtovy COUTTrsSTU

basic (non-Al) computer systems to be labelled as Al. For instance, in the 1980s an expert system based
on fixed rules that performed activities traditionally carried out by bank clerks was considered to be
Al, but today such systems are often considered too simple to be Al. Similarly, the Deep Blue system
that beat Garry Kasparov at chess in 1997 is now derided by some as a brute force approach - and so
not true Al It is likely that today’s state-of-the-art Al will also be considered ‘too simple to be AI’ in 20
years’ time.
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4.2.2 Al use cases

Al

can be used for a wide variety of application areas, such as:
Anomaly detection systems (e.g. fraud detection, health monitoring, and security)

Autonomous systems (e.g. vehicles and trading systems)

M
fra

4.’

Al
m43
au
se
rol

Al

Computer vision systems [(€.g. Image classification)

Digital assistants (e.g. Siri, Cortana)

Email systems (e.g. spam filters)

Intelligent speech systems (e.g. speech recognition and speech synthesis)
Natural language processing (NLP) (e.g. deriving meaning from human‘language)

Recommender systems (e.g. for purchases, films and music)

Search engines (e.g. for searches and marketing) \}'\“ g
Security systems (e.g. face ID) ')"\ X
Smart home devices (e.g. thermostats) ‘,"

Social media (e.g. feed personalization) o \'

re detail on Al use cases is available in theSO/IEC TR 24030(3l. A comprehensive list of Al use cases
m a non-standard perspective can be found at Referencé [& .

.
\,

.3 Al usage and market . \

Cad

technologies are widely used in.real-world app{iéltions, such as recommending, prediction, decision
king and statistical reporting. The applications are deployed in a variety of systems including
fonomous driving vehicles, robot-controlled’ warehouses;: financial forecasting applications, and
furity enforcement.and are increasingly integrated-with cloud computing, big data analytics,
potics, internet of things, mobile Corgp'uting, smart cities,smart homes, intelligent healthcare, etc.

\
based systems@re becoming ever' more widespread:

The perception is that Al'is the most significant technology of this time as 69 % of technology
executives ranked it i(t«h'e top three most significant technologies over the next 5 to 10 yearsl2l.

91 %of technology-executives believe Al will be at the centre of the next technological revolution[2l.
The share ofjobs requiring Al skills has grown by a factor of 4.5 since 20136l

Global revenues from Al for enterprise applications is projected to grow from $1.62B in 2018 to
$31.2B4n 202571,

Itis ‘estimated that Al will add $13 trillion to the global economy over the next decadel8l.

12

ZZ % of IT budgets are allocated to Al projectsia.

64 % of companies had Al projects in place or planned for next 12 monthsl(2l.
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4.2.4 Al technologies

4.2.4.1 General

Al can be implemented using a wide range of approaches or technologies. These can be grouped in
different ways including:

Searchatgorithims
— Reasoning techniques

— Logic programs

— Rule engines

— Deductive classifier

— Case-based reasoning

— Procedural reasoning \.\“
— Machine learning techniques (see Annex A for more detail) O |

— Artificial neural networks D%

— Feed forward neural networks

O
— Deep learning 2\
)
— Recurrent neural networks ™
)
— Convolutional neural networks -
. A
— Bayesian network \
. %)
— Decision tree -

— Reinforeement learning’_\\“
— Transfer learning ".\\)
—Genetic algorit‘lgm/s

) Support véctor machine

Some of the rhost effective Al-based systems can be considered as Al hybrids, using a mix of th¢se
technologies:

ISO/IEC22989[1] provides more details on Al concepts and on the above technologies.

4.24.2 Robots and software agents

Autonomous robots with electronic systems were first developed at a similar time to Alan Turing’s

work on machine intelligence, and robots are now widely used in factories, although the use ol AT in
such robots is limited[10],

A software agent is a software system that acts upon information available to it to achieve a goal. For Al,
we are more often interested in intelligent software agents that are software agents capable of making
decisions based on their experiences (so making them ‘intelligent’). Intelligent software agents are also
often labelled as autonomous as they are allowed to select which action to perform (see 4.2.4.3 for more
on autonomous systems).
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Int

elligent software agents may work alone or with other agents to implement Al. These agents are

most often located in computer systems (either physical or in the cloud) and interact with the outside

wo

rld through computer interfaces. A tool using Al for performing software testing is most likely

to reside in a computer system and interact with the software tester through the user interface and
interact with the software it is testing through a computer interface using a defined protocol (such a
tool would be considered an Al-based system as it has an Al component working with conventional,
non-Al subsystems, such as the user interface). Intelligent software agents may also reside in robots;

th
of

Tajor difference being that the Tobots provide the AT witita piysicat presence and a gifferent way
nteracting with the environment that is not available to purely computer-based software agents.

4.2.4.3 Al and autonomous systems

Autonomous systems can be physical or purely digital, and include systems for:

fu
RA

Transportation

— Cars / trucks

— Unmanned aircraft (drones) ¢
— Ships / boats A »

— Trains L%

~ )
Robotic/IoT platforms (e.g. manufacturing, vacuum cleaners, smart thermostats)
~
\
Medical diagnostics N\
I\
Smart buildings / smart cities / smart energy / smartutilities

Financial systems (e.g. automated market trading s‘ys'tems)

Thr logical structure of an autonomous system >an be considered as comprising three high-level

ctions: sensing, decision-making and contgpl, as shown in Figure 1. Sensors (e.g. cameras, GPS,
DAR, LIDAR) provide inputs to the sensing function and are used to gather information about the

sy$tem’s environment, suchas the positiefis of nearby cars; pedestrians and information on road signs

for

an autonomous car/Part of this ‘sensing’ function is also known as localization, which is determining

th¢ system’s current position in the énvironment and relating this to maps (e.g. detailed offline maps for

au
br

(e.
(e.

fonomous cars). The ‘decision-m’a—ﬁing' function decides what the system’s next move should be (e.g.
nking, turning, climbing, descending) depending on the function provided by the autonomous system
5. adaptive cruise control))The ‘control’ function implements the decision by calling on actuators
b, to release air, open fu@l\/‘alve).

14
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v 1
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=3 SENSORS SENSING MAKING CONTROL ACTUATORS (=

v

Al
l l X v
Po
Figure 1 — Logical structure of an autonomous system

v

#

Fully autonomous systems require more, and.perhaps bette_r,,’s‘ensors than their less autonomgd
counterparts; and to make sense of the data from these semnsors, these systems typically use dd
learning, a form of machine learning. Tocperform the mecessary decision-making, the system v
also often use deep learning. Thus, each of the high<le€vel functions in the autonomous system ¢
be implemented as Al or can be implemented usingsether technologies (in an autonomous car, f
sensing and decision-making functions are often implemented as Al, while the control function may
implemented using conventional.techniques). Iis also possible to implement a complete autonomg
system as a single ML system/(e.g. a car steering system that learns from ‘observing’ manual steer
based on video inputs and/(steering output\s’).

&)

4.2.5 Al hardware W,

Al-based systems, especially M.J}'systems implemented as neural networks performing pattg
recognition, (€.g. machine visigni-speech recognition), require many calculations to be run in paral
General-purpose CPUs do oot perform this type of calculation efficiently and, instead, graphi
processing units (GPUs)swhich are optimised for parallel processing of images using thousands of co
are often used. GPUsare however not optimised for Al, and a new generation of hardware develoy
specifically for Al i(nOw becoming available.

Many Al implemeéntations are, by their nature, not focused on exact calculations, but rather
probabilistic-determinations and so the accuracy of a 64-bit processor is often unnecessary a
processors with less bits can run faster and consume less energy. Because much of the processing ti
and energy is involved with moving large amounts of data from RAM to the processor for relativ,
simple'calculations, the concept of phase changing memory devices that allow simple calculations to
performed directly on memory are also being developed[11],

Al-specific hardware architectures include neural network processing units and neuromorp
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n_

specific integrated circuits can be tailored to Al workloads, as will the next generations GPUs. Some
of the integrated circuits within these architectures are focused on specific areas of Al, such as image

recognition. When performing machine learning (see Annex A), the processing used to train mod

els

can be quite different from the processing used to run the inferencing on the deployed model and this

suggests that different processors for each activity should be considered.
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4.2.6 Al development frameworks

There are several open-source Al development frameworks available, often optimised for specific
application areas.

EX

Th
by

4.2

Up
Su

Ge
nu
m(
me
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4.3
T

up
re;

Fa
tes

AMPLE The most popular Al development frameworks include:

TensorFlowl¢4] - based on data flow graphs for scalable machine learning by Google

PyTorchl3] - neural networks for deep learning in the Python language

MxNetle€] - 3 deep learning open-source framework used by Amazon for AWS

CNTKIEZ] - the Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolKit

Kerasl8] - a high-level API, written in the Python language, capable of running ontop of TensorElow or CNTK

s information is given for the convenience of users of this document and does not constitute’an’endorsement
[SO/IEC of the frameworks named.

X v

.7 Narrow vs general Al Po

until now, all successful Al has been ‘narrow’ Al, which means it can han;ile"a single specialized task,
th as playing Go, performing as a spam filter, or controlling a manoeuvxein a self-driving car.

)

neral Al is far more advanced than narrow Al and refers to an Albased system that can handle a
ber of quite disparate tasks, much the same.as'a human. Gegeral Al is also known as high-level
chine intelligence (HLMI). A survey of Al researchers publ%shed in 2017 reported that the overall
an estimate for when HLMI would be achieved was by 206112l. The testing of HLMI is not within the
pe of this document.

/IEC 22989[1] provides coverage of Al concepts, incll}ding narrow and general Al systems.
Q)

.3 Testing of Al-based systems X

)
K

S\
A

3.1  The importance of testing for AL—based systems

re have already been a number ofV\hdely publicized failures of Al. According to a 2019 IDC Survey,
ost organizations reported somefailures among their Al projects with a quarter of them reporting
to 50 % failupe rate; lack of skilled staff and unrealistic expectations were identified as the top

N

hsons for failure.”[13] N

lureshave historically Igovided one of the most convincing drivers for performing adequate software
ting. Industry surveys show a perception that Al is an important trend for software testing:

Al was ratedhe’'number one new technology that will be important to the testing world in the next
3 to 5 yearsB4l,

Al was.rated second (by 49.9 % of respondents) of all technologies that will be important to the
softyare testing industry in the following 5 years[12l,

The most popular trends in software testing were Al, CI/CD, and security (equal first)[1l.

However, the quality assurance of existing Al application development processes is still far from
satisfactory and the demand for being able to show demonstrable levels of confidence in such systems
is growing:

16

19 % of respondent are already testing Al / machine learning[14l.,

57 % of companies are experimenting with new testing approaches[?l.
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Software testing is a fundamental, effective and recognized quality assurance method which has
shown its cost-effectiveness to ensure the reliability of many complex software systems. Moreover,
the adaptation of software testing to the specifics of Al-based systems remains largely unexplored
and needs extensive research to be performed[Z], Therefore, testing for Al-based systems is definitely
important.

Testing is also included at a high-level as a mitigation measure for known Al vulnerabilities in the

is als
ISOAECTR 24029 an tructurarthinacce im aptificia] Tntalligan~al3]
O A=A 0ro-oR-tFustwoerthihesSHarHHearHtegence-4-

4.3.2 Safety-related Al-based systems

Al-based systems are already beginning to be used for making decisions that affect safety and this
trend will see increased use of Al for safety-related systems. Safety is defined as the ‘exp€ctation thdt a
system does not, under defined conditions, lead to a state in which-human life, health;\property, or the
environment is endangered (ISO/IEC/IEEE 12207:2017).

Current standards for the assurance of safety of technical systems require adfull understanding of the
system under all possible conditions before its release. Many Al-based systems are probabilistic gnd
non-deterministic (see 5.1.8) - this unpredictability makes it very d1ff1cu‘li‘to make an evidence-baded
case that they will not cause harm. Also, the use of machine learning; stich' as deep learning, can result
in systems that are complex (see 5.1.6) and difficult to interpret (see 5.1.7). If Al-based systems ar¢| to
be used in safety-critical areas, then each of these problem areas.needs to be addressed. Standards for
safety-related Al-based systems are covered in 4-3.3. ~ 5

4.3.3 Standardization and Al \

)
4.3.3.1 Introduction to Al standardization

\,

Standardization aims to promete innovation, help improve system quality, and ensure user safety, while
creating a fair and open industry ecosysteni Al standardization occurs at various levels, including:

. TR\ ¢
— International standards organizatigus

A

— Regional standards organizati\ops

— National standards organiz’étions
Y

— Other standards organfz’ations

Under Joint Technicdl’ (\Tommlttee 1 (JTC 1) of ISO and IEC, Subcommittee 42 (SC 42) is specificdlly
responsible for a ificial intelligence standards, although Al-based systems are also consideied
relevant by sewveral other ISO/IEC committees and groups, such as JTC 1/SC 7 (software and systems
engineering),\I'€ 22 (road vehicles) and ITU-T SG20 (IoT, smart cities and communities).

At the Eurepean level, ETSI and CEN-CENELEC are both involved with Al standards. ETSI has [an
Industry Specification Group (ISG) on Experiential Networked Intelligence (ENI), whose goal is|to
develop standards for a cognitive network management system incorporating a closed-loop contfol
approach. CEN-CENELEC intends to define a standards roadmap for the Al domain that is due in 202.

China has several Al standards initiatives at the national level, with national technical committges

working on automation systems and integration (SAC/TC 159), audio, video, multimedia and
equipment (SAC/TC 242) and intelligent transport systems (SAC/TC 268). SAC/TC 28 also addresses Al
standardization work related to vocabulary, user interfaces and biometric feature recognition.

Germany has developed Al quality metamodell121.[20], which is described in more detail in 4.3.3.3.

The IEEE provides a specific focus on the ethical aspects of Al-based systems. The IEEE Global Initiative
for Ethical Considerations in Artificial Intelligence and Autonomous Systems has a mission “to ensure
every stakeholder involved in the design and development of autonomous and intelligent systems is
educated, trained, and empowered to prioritize ethical considerations so that these technologies are
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advanced for the benefit of humanity.” As part of this initiative, the IEEE P7000 series of standards[¢?
addresses specific issues at the intersection of technological and ethical considerations.

JTC 1/SC 42 are also working on the topic of ethics and AIlZ3],

Other standards initiatives include standards on Al tool interoperability, such as ONNX (Open Neural
Network Exchange format)[Z0], NNEF (Neural Network Exchange Format)[Zll and PMML (Predictive
Mqdel Mark-up Language)[72]

4.3.3.2 Regulatory standards for Al

4.3.3.2.1 General

Regulatory standards can be split into two broad categories: those that-apply to safety-related

systems and those that apply to non-safety-related systems, such as financial, utilities @nd reporting

systems. Safety-related systems are those that could potentially cause harm to people; property or the

enyironment. Regulatory standards often include requirements for'the software-testing of systems
%

coyered by these standards. )¢

lo.

4.3.3.2.2 Non-safety-related regulatory standards O )

At|present (in 2020), there are few international standards that apply tp non-safety-related Al-based
systems. However, from May 2018, the EU-wide General Data Protecti‘on Regulation (GDPR) came into
effect and can cover Al-based systems. Any system that uses aut mated processes to make decisions
with legal or similarly significant effects on “individuals fellows the GDPR rules that requirel62]

organizations using such systems to provide users with: ‘\>

—| specific and easily accessible information about the attomated decision-making process;
\ 4

—| asimple way to obtain human intervention to re(\ai.ew, and potentially change the decision.
\

o)

Alispecific requirements for safety- related AI based systems are currently (in 2020) poorly covered by
stgndards and in mostdemains are reha.nt on pre-existing standards written for conventional (non-Al)
systems. Some of thése standards (e. g\{EC 61508[74] and 1SO 26262[75]) actually specify that Al-based
sy$tems that are.noen-deterministie/(which is many of them) should not be used for higher-integrity
systems, althoughin practice_this:often means that Al-based systems are considered as special cases
anfl follow ‘tailored’ versiomsyof these standards, ignoring some of the requirements. These existing
safety-related standards z(Lso‘require that the tools used to develop safety-related systems be suitably
quplified. The currently)javailable Al frameworks and algorithms are not qualified for use on the
deyelopment of safety<felated systems. Although it is possible to gain this qualification through use, the
relative immaturity and rapidly evolving nature of ML algorithms would mean that it is unlikely they
wduld satisfy current regulatory requirements in this area.

4.3.3.2.3 Safety-related standards

In[the ared of autonomous systems, which are already being used (e.g. on roads, in the air, at sea
anf in factories), there is a danger of a gap between practice (driven by commercial necessity) and
th¢ requirements of standards. For road vehicles a new standard, ISO/PAS 21448 on the safety of the
infended functionality (SOTIF), was published in 2019. This partly bridges this gap by covering an

area not covered by the existing standards that are concerned with mitigating risks due to failures.
For Al-based systems, an additional problem is that they may cause harm without there being a failure
- perhaps due to them simply misunderstanding the situation. SOTIF covers design, verification (e.g.
requiring high coverage of scenarios) and validation (e.g. requiring use of simulations).

The U.S. Department of Transportation and the National Highway Traffic Safety Administration
(NHTSA) provides guidance for the development and testing of automated driving systems in the US
(Automated Driving Systems (ADS): A Vision for Safety 2.0[ZZ]), however use of this guidance is purely
voluntary.
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A new standard is also being developed by UL for the safety of autonomous products in general
(Standard for Safety for the Evaluation of Autonomous Products, UL 4600[Z8]). This standard provides

assessment criteria to determine the acceptability of a safety case for the autonomous product.

4.3.3.3 The Al quality metamodel

DIN SPEC 92001-1[19 is a freely available standard that provides an Al quality metamodel intended

TO ensure the quatity of Al-based Systems. The standard defines a generic tife cycle for an Al mody
and assumes the use of ISO/IEC/IEEE 12207 life cycle processes[Z9l. Each Al module is assignedr‘le
of risk (high or low), based on whether the Al module has relevant safety, security, privacy, er.ethi
attributes.

DIN SPEC 92001-2[29] js under development and describes quality requirements whichyare linked
the three quality pillars of functionality & performance, robustness; and comprehensibility. They a
link to one or more life cycle stages and processes and they arelassigned a category of model, d3
platform or environment. Based on their relevance, these requirements of the Al'module are classif
as mandatory, highly recommended or recommended. This requirement clagsification and the assign
risk of the Al module are used to determine the extent to which the recomnler(ded quality requireme
should be followed.

5 Al system characteristics
5.1 Al-specific characteristics

5.1.1 General \\>

Al-based systems have both functional and noi-functional requirements, the same as any systg
As such, the quality characteristics in the ISO}‘IEC 25010 quality model, as shown in Figure 2, ¢
be used to define, in part, ‘the requireménts of Al-based systemsl2ll. However, Al-based syste
have some unique characteristics that are not contained with this quality model, such as flexibil
adaptability, autonom§, )evolution, biag transparency/interpretability/explainability, complexity a

non-determinism. These non-functional characteristics.are described in more detail in 5.1.2 to 5.1.8.

The full set of quality characteristics for Al-based systems could be used as the basis for a check
used during test-planning for the identification of risks that need to be mitigated by testing. Note t}
there is potentially some interaction, overlap and possible conflicts between these characteristics,
there is with any set of non- functlonal requirements. A joint ISO/IEC project is currently underway
developastandard inthis area, titled quality model for Al-based systemslo3],
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ISO/IEC 25010 product quality model

Functional Performance e o T . Maintain - o
o . Compatibili Usabili Reliabilit Securi o Portabili
suitability | efficiency p ty ty y ty ability ty

Functional Time Co-existence JAppropriateness Maturity Confidentiality | Modularity Adaptability
let behavi izabilit
comp e. eness ehaviour Interoperability recogmza. 1 4 Availability Integrity Reusability Installability
Functional R?‘S.OUI:CE Learnablhty Fault tolerance Non- Analysability Replaceability
CUITCTCLUIITSS ULIrisSativll Operabl]lty repudiat]on X
Functional Capacity Recoverability Modifiability
i A ili
appropriateness g:g{eigfgg ccounta‘bll ity Testability
Authenticity
User interface
aesthetics
Accessibility
\ )\ )
Y )
Functional What the Non-functional How the system
testing system does testing does it (:/
&
O
Figure 2 — ISO/IEC 25010 product-quality model’
<\
0”
5.1.2 Flexibility and adaptability s

Flgxibility and adaptability are closely related characteristicss Flé)ﬂblllty can be defined as a measure
of the range of possible behaviours a system.can exhibit (Q(}tates it can inhabit) - and the costs of
mgving between them. Adaptability can be defined as a meaSure of the ease with which a system can be
adppted (modified)[21]. However, there are many confllc;tlhg definitions.

Both adaptability and flexibility are useful attrlbut\%'of a system where the operational environment
is pxpected to change. Such changes in the opgrational enviromment may, or may not, be specified
in advance (i.e. the range of new contexts of @tse which the system is expected to cope with may be
specified before the systemis built or it maybe unknown). Fora system to achieve useful adaptability or
fleiibility it requires the ability to determine when it needs.to change. Adaptative and flexible systems
nepd to actively or passively gather m'formatlon about-their operational environment. Exploration
(aqtive gathering of information) prQVldeS useful information for self-improvement, but it can also be
dapgerous (e.g. pushing the boundaties of a flight envelope) and systems should exhibit caution when
exploring in safety-related situ{ations.

Some people believe that f@xfbility is one approach to achieving adaptability, with adaptation including
the addition, removal, feplacement or changing (flexing) of parts of the system. Others believe that
adpptation is one approach to achieving flexibility (e.g. “flexibility can be achieved using different
te¢hnical mechapisms, such as reactivity, pro-activity, interaction, adaptation or self-learningl221”).
Self-learning Al-based systems could be considered to be both flexible and adaptive.

—t

Flgxibility.@nd adaptability requirements should specify those environment changes to which the
system should be able to respond and also include requirements on the response process itself, such as
mgximum time to change, where appropriate. However, these requirements are likely to become less
specific for systems where all possible future contexts of use have not been defined in detail.

5.1.3 Autonomy

Autonomy is the ability of the system to work for sustained periods without human intervention. The
expected level of human intervention should be specified for the system - and so should be part of
the system’s functional requirements (e.g. ‘the system will maintain cruise condition until one of the
following occurs...”). Autonomy can also be considered in combination with adaptability or flexibility
(e.g. system should be able to maintain a given level of adaptability or flexibility without human
intervention). In some circumstances, an Al-based system may exhibit too much autonomy, in which
case it may be necessary for a human to take control away from it.
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5.1.4 Evolution

Evolution is when the system changes its behaviour over time. For Al-based systems, we are concerned
with two forms of change. The first is when the system changes its behaviour, typically due to the
system learning new (hopefully improved) behaviours as it is used (self-learning). The second type of
change is when the usage profile changes and usage ‘drifts’ away from the original planned usage. Al-
based systems are typlcally concerned Wlth Concept drift (the change in understandlng of data and its

e : : ata - es—writh
tlme potentlally 1ntroduc1ng prev1ously unseen varlety of data and new categorles thereof) For more
details see A.5.3 on distributional shift. Changes in system behaviour are notalways positivefand the
negative form of this system characteristic is often known as drift, degradation or staleness.

5.1.5 Bias

Bias is a measure of the distance between the predicted value provided by the machine learning (ML)
model and a desired fair prediction. An Al-based system that demonstrates systematic discriminatjon
against an individual or group of individuals is considered to be showing unfair bias. Some applicatjon
areas, such as in lending, are bound by legal requirements on fairness. Bias s normally caused by the
machine learning picking up unwanted patterns in theé training datassich as an historic pattern| of
bias towards male job applicants. Training data can be compromised by both explicit and implicit bias.
Implicit bias is created unintentionally, when unknewn unwanted"patterns in the training data ex]st.
Explicit bias is created when known unwanted patterns in trainiing data influence the derived model.
Bias in training data can be caused by several practices, sucli-ds “prejudiced labelling, historic bias and

uneven sampling. N
\

Data features that would lead to unfairness in the resultant model are either not included or handled
carefully. For instance, among others, the follow1ng faatures can potentially cause unwanted bias:

— Gender

/'

— Sexual orientation AN
— Age %,
— Race A

— Religion N

— Country of origin

— _Educational ba@lggf’hund

—  Source of income

— Homeaddress

Simply-removing the above features from the training data does not necessarily solve the bias problem
as there could well be other features (perhaps used in combination) that could still lead to an unfpir
model (e.g. whether parents were divorced can lead to racial stereotyping in some locations[23]).

JTC 1/SC 42 are also working on the topic of bias in Al-based systems[89],

5.1.6 Complexity

Al-based systems, and especially those implemented through deep learning, can be extremely complex.
To put this complexity in context, a typical neural network with satisfactory performance may have
around 100 million parameters that were learned during training that contribute to a single decision
(there are no visible ‘if X and Y then result is Z’ rules as found in traditional expert systems). Al-based
systems may also be used for problems where there is no alternative, due to the complex nature of the
problem (e.g. making decisions based on big data).
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5.1.7 Transparency, interpretability and explainability

The complexity of Al-based systems (e.g. deep neural nets providing a ‘black-box’ implementation of
Al) can lead to problems with understanding for both users and developers. This ‘understanding’ can
generally be considered in terms of a system’s transparency, interpretability and explainability, where:

— transparency - level of accessibility to the algorithm and data used by the Al-based system;

—| interpretability - level of understanding how the underlying technology works;
—| explainability - level of understanding how the Al-based system came up with a given result.

Different stakeholders will have different requirements for transparency,. interpretability. and
explainability, for instancel24l;

—| giving users confidence that an Al system works well;

—| safeguarding against bias;
—| adhering to regulatory standards or policy requirements; ’ 4

—| helping developers understand why a system works a ‘certain way, assess its vulnerabilities, or
verify its outputs; or X

—| meeting society’s expectations about how individuals are affordéd’ agency in a decision-making
process. The General Data Protection Regulation' (GDPR) inclades requirements for explainability
for certain decision-making systems (i.e. the’system must‘provide meaningful explanations of
decisions made). ‘\>

Thie required levels of transparency, interpretability and.explainability change from system to system.
Fof instance, the results used to directasmarketing campaign are likely to need less explainability than
the results for more critical systems; such as thoseised to support decisions on surgery or advise on
jai] terms (e.g. in regulated domains). For such critical systems we.need explainability at least until we
leqrn to trust the system. N

)
K

re are a number of options for addressiﬁg transparency, interpretability and explainability in Al-
baped systems. For instance, transparency:can be partially addressed by publishing details of the choice
of framework, training-algorithm and'training data used to create the (opaque) deployed model (see
Anpnex A for more details on this). (uterpretability may be addressed by selecting models that humans
d easier to.understand (e.g. rule-based models, instead of deep neural networks). However, as with
mgny non-furctional requirenients, there are possible conflicts between characteristics - in this case
achieving interpretabilitygmay need to be traded off against required accuracy. Explainability may be
achievedinsome systems through visualization of how different inputs affect results.

field of explainable Al (XAl) covers ways to make Al-based systems more explainablel231[26] (but it
aldo covers transparency and interpretability). There are two main approaches to XAl being considered.
Figst, looking atémethods for developing Al-based systems that are inherently interpretable and second,
supplementing black-box Al-based systems, such as deep neural networks, with tools that provide a
level of explainability.

JTE £ S€ 42 are also working on the topic of explainability in Al-based systemsl[3l.

5.1.8 Non-determinism

A non-deterministic system is not guaranteed to produce the same outputs from the same inputs every
time it runs (in contrast to a deterministic system). With a non-deterministic system there may be
multiple (valid) outcomes from a test with the same set of preconditions and test inputs. Determinism
is normally assumed by testers - it allows tests to be re-run and the same results to be achieved - this
is extremely useful when re-using tests for regression or confirmation testing. However, many Al-based
systems are based on probabilistic implementations, meaning that they do not always produce the same
results from the same test inputs. For instance, the calculation of the shortest route across a non-trivial
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network (the travelling salesman problem) is known to be too complex to calculate exactly (even by a
powerful computer) and sub-optimal solutions based on an initial randomly selected path are normally
considered acceptable. Al-based systems can also include other causes of non-determinism, such as
concurrent processing (although these are often found in complex conventional, non-Al, systems).

5.2 Aligning Al-based systems with human values

Russelll2ZT points out two major problems with Al-based systems. First, the specified functionalfity
may not be perfectly aligned with the values of the human race, which are (at(best) very difficult to
pin down. He gives the example of King Midas, where the requested ability to turn everything [he
touched into gold was imparted - exactly as requested - but then found to be not what he truly'wantgd.
A more up-to-date example is provided by Bird and Layzelll28], who uséd“an Al-based system usng
genetic algorithms to generate a design for an oscillator, which resulted in a solutiorvthat involyed
using system’s motherboard as a radio, so that it could receive oscillating signals preduced by a neaiby
personal computer. When we specify the required objectives of Al-based systems’we need to be syre
that what is requested is actually what is needed - or first ensure the system"is intelligent enough| to

provide what we request, while also taking into account human norms. L

RN
One way for Al-based systems to learn these human norms would be‘through observation (this may
initially simply be through monitoring limited human decisions), hgwever great care is needed|to
ensure that the observed human behaviour is representative and«ofily representative of ‘good’” human
behaviour (probably defined as excluding both deliberately badjbehaviour and irrational behavidur,
even if this irrational behaviour is by ‘good’ humans). Consnderatlon also needs to be given to this
learning of human norms being a continuing process, as w. at'we consider acceptable behaviour today
is quite different from what was considered acceptablé behaviour 20 years ago - human norms dan
change quite quickly. ‘\>

Russell’s second problem is that.any sufficiently:tapable intelligent system will prefer to ensure |its
own continued existence and to.acquire physicakand computational resources - not for their own sake,
but to succeed in its assigned-task. It is re¢oghized that a sufficiently intelligent system will disaple
any ‘off’ switch early on in. its operation;simply because when it is disabled it is unable to achievelits
given objectives. Al-based systems willAry to fulfil their given objectives, but we need to be careful of
unwanted behaviours,such as thosethat result in side<effects (see 5.3) or reward hacking (see 5.4).

Automation complacency is a fu.r.ther problem that can occur in the interaction between human users

and Al-based(systems. This can: dccur when users place too much trust in an automated system and|do

not pay sufficient attentionsté monitoring system outputs. Such inattention can cause accidents, sych

as have been seen whentthe “‘driver’ of a (partially) self-driving vehicle fails to override the system and

take control of the vehicle, when needed.
&

5.3 * Side-effects

Side-effectsoccur when an Al-based system attempts to achieve its objectives and causes (typicqdlly
negative).impacts on its environment. For instance, a home cleaning robot may be tasked with cleanng
the Kifchen in your home and decide that ‘eliminating’ your new puppy will help it achieve its objectiye.
Of course, you could explicitly require your robot to accept that the puppy has a right to be in the kitcljen
(and therefore not be eliminated), but as Al-based systems are used in ever more complex environments
it soon becomes impracticable to explicitly specify how the robot should interact with every aspect of
its operational environment. For instance, your cleaning robot would also have to be told that using a

high-pressure hose to clean the kitchen was not practical due to the (side-) effect of the water on the
electrical appliances and sockets.

At a high level, specified objectives for Al-based systems may need to include a caveat that minimises
side-effects. For narrow Al, such side-effects may be explicitly specified, but as Al-based systems
become more advanced and start working in more varied operational environments it may be more
efficient to define more generic caveats, such as requiring a minimal change to the environment while
achieving their objective.
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5.4 Reward hacking

Al-based systems using reinforcement learning (see A.1) are based on a reward function that gives the
system a higher score when the system better achieves its objectives. For instance, a home cleaning
robot may have a reward function based on the amount of dirt it removes from the floor - getting
higher scores when the amount of dirt removed is higher. Reward hacking occurs when the Al-based
system satlsfles the reward functlon and SO gets a hlgh score, but mis- 1nterprets the requlred ob]ectlve

ini 1ally make the floor extremely dirty, so giving it the opportunity to remove more-dirt - a set of
activities that do not meet the spirit of the initial objective of cleaning the kitchen. In‘this example the
flojor should eventually be clean (although unnecessary energy will have been expended), but there aré
many examples of reward hacking where the Al-based system satisfies the reward function but.does
nof come close to achieving the required objective (e.g. a cleaning robot with-a.reward function based
on|it being able to see less visible dirt that disables its vision system).

Limiting the system’s ability to innovate, however, is not the solution. One of the attractive features of
Alibased systems is that they should be able to come up with smart.ways to solve problems, often in
wdys humans would not have considered (or perhaps even understand). X v

%

5.5 Specifying ethical requirements for Al-based systems NS

',

Ethics is defined in the Cambridge Dictionary as ‘a system of accepted b@_hefs that control behaviour,
especially such a system based on morals’. As Al-based systems havesbecome more popular, the topic
of pthics and how Al-based systems should implement them is probably the most discussed topic in Al,
drawing in far more people than those involved in the technical a§pects of Al

N
Ar example of the interest in ethics in Al can'be seen in MEP¥Moral Machinel29]. This is a platform for
gathering people’s opinions on moral decisions that may:be made by autonomous cars, with the aim of
providing guidance to the developers of'such vehicles. Bétween 2014 and 2018 this platform gathered
40[ million ethical decisions in ten languages fromgjillions of people in 233 countries and territories.
The (ongoing) study has found that there is a b o&d consensus that'systems should give priority to
yolinger people, priority to people over anim ls and priority to-saving more people (e.g. save four
ocfupants of a car over two pedestrians). The study also found ‘that there are significant differences
in the choices made by people from differént parts of the world (suggesting that autonomous cars may
nepd to follow different ethical guidelinés-depending on where they are to be used).
R

The European Commission High-Lieyel Expert Group on Artificial Intelligence published key guidance
to promote trustworthy Al in the'area of ethics in April 2019391, It identifies the ethical principles that
shpuld be respected in the development, deployment and use of Al systems:

—| Develop, deploy and u<se Al systems in a way that adheres to the ethical principles of respect for
human autonomy;.-prevention of harm, fairness and explicability. Acknowledge and address the
potential tensions between these principles.

—| Pay partictdat’ attention to situations involving more vulnerable groups such as children, persons
with disabilities and others that have historically been disadvantaged or are at risk of exclusion, and
to situations which are characterised by asymmetries of power or information, such as between
employers and workers, or between businesses and consumers.

— Arknnw]pdgp that while hringing substantial henefits to individuals and saciety. Al systems also

pose certain risks and may have a negative impact, including impacts which may be difficult to
anticipate, identify or measure (e.g. on democracy, the rule of law and distributive justice, or on
the human mind itself.) Adopt adequate measures to mitigate these risks when appropriate, and
proportionately to the magnitude of the risk.
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6 Introduction to the testing of Al-based systems
6.1 Challenges in testing Al-based systems

6.1.1 Introduction to challenges testing Al-based systems

Most Al-based systems comprise one or mare Al compaonents (pg a MI mndp]) surrounded h_’ a
considerable array of traditional software that provides the supporting infrastructure, typically tngde
up of conventional components, such as the user interface and database. Even ‘pure’ Al components
are implemented in software and so can suffer the same defects as any other software. Thus, wHen
testing an Al-based system, conventional software testing approaches are still required.\However, Al-
based systems include a number of special attributes that can make additional testingmneécessary than
for conventional software systems:

6.1.2 System specifications

Despite the amount of recent academic research conducted on Al (and M%; in particular), therd is
little coverage of how best to specify the expected behaviour of Al-bas\e‘ﬂ‘ systems with their spedial
characteristics (see 5.1). G )
In an ideal world, complete formal specifications would be ay@illhble, so allowing the creation| of
automated test oracles. The specifications for Al-based systems.arelikely to be incomplete and informjal,
which requires testers to determine unspecified expected résults, creating a test oracle problem. This
can be problematic if the testers are not'fully cognizant(of the required system behaviour and it is

difficult to get this information from demain experts.
W
Examples of specification challenges include when,

— thedesired output of the system is not yet known, and the system is being built to provide that output;

— thereal-world inputs.are at such a complexity and scale;that the behaviour of the system is difficult
to predict in advance; %)

— the required behaviour incluQQs comparison_to' human qualities, including intelligence, that gre

difficult to define and measute.
L

Another problem is that Al-hased systems are often specified in terms of objectives rather than requited
functionality, which is aumiore conventional approachl3ll, This is because the nature of many Al-baded
systems'is‘such that the:functionality provided is opaque (e.g. it is very difficult to imagine how a dgep
neural network fuIQtif)ns).

Some Al-basedsystems have extensive operational environments (e.g. an autonomous drone) and fully
defining the-opeérational environment can be more challenging than for a typical conventional systgm.
Note thatthe complexity of the operational environment normally means the test environments for
these systems can be equally challenging (see Clause 10 for more details on test environments).

The.specifications for ML models should contain a set of required performance metrics (see A.8)|to
aet'as acceptance criteria for the ML models. Acceptance criteria including metrics may consider fa
positives and negatives, recognizing that 100 % accuracy is unlikely to be achieved in many use cages.

cro O V5 -, - - O v-orrero av >

criteria may consider multiple evaluations, as experts may not reach consensus.

6.1.3 Testinput data

Al-based systems may depend on big data inputs and/or inputs from a large range of sources. This can
mean that input data is often unstructured and provided in diverse formats. When developing Al-based
systems managing this data is a specialist task of a data engineer or data scientist, but when it comes to
the testing, this specialist data management task is one of several performed by the tester, often with
little or no specialist training.
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As with all systems, where the data being processed are regulated, there may be a requirement to
anonymize or otherwise control copies of real data, for example, privacy legislation such as GDPR,
US legislation such as Health Insurance Portability and Accountability Act, and India’s Personal Data
Protection Bill. Where necessary, a sufficient level of sanitization can prevent the Al-based system
under test from inferring personal details that are only partially hidden.

Sanitization of data can include de-identification of the data for privacy reasons as described in

THE 00075 UTO

6.1.4 Self-learning systems

As| Al technology becomes more advanced, more Al-based systems will become available that can
change their own behaviour over time. These may be self-adapting systems-(able to reconfigure and
oplimize themselves) or full self-learning systems that can adapt themselves by learning‘from their
papt experiences. For both situations, it is likely that some tests that ran successfully onthe original
system will no longer be viable on the new, improved system. Although it may be nelatively easy to
idgntify which tests are no longer valid, it is far more difficult to_ensure that new-tests for the new

functionality have been generated. x &

X\
Anjother potential problem with self-learning systems is that the systems can inadvertently learn
unwanted new behaviours from the testing. «5

x

)
-

%
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6.1.5 Flexibility and adaptability

Thie testing of the flexibility and adaptability of an Al-based syS§fem is typically based on observing
hofv the system changes in response to environment modification or mutation. The system’s functional
anf non-functional requirements should be'tested, and a forhtof regression testing, ideally automated,
is pften a suitable approach. The change process perfotined by the system should also be tested, to
defermine, for instance, whether the system can changeWwithin a required timeframe and whether the
system stays within constraints forthe resources;‘.Qﬁ»sumed to achievethe change.

\
6.1.6 Autonomy %)

S\
A

An approach to testing the autonomous behaviour of an Al-based system is to try and force the system
ouf of its autonomous behaviour and-get it to request intervention in unspecified circumstances (a
foym of negative testing). Negative te‘s?ng can also be used to try and ‘fool’ the autonomous system
ino thinking it is in control whetit should request intervention (e.g. by creating test scenarios at
th¢ boundary of.its operatlonal envelope - suggesting the application of boundary value concepts to
sc¢nario testing). ( “

6.1.7  Evolution

Tepting for system\evolution (or drift) in an Al-based system normally takes the form of maintenance
teqting, which<e&ds to be run on a frequent basis. This testing typically needs to monitor specified
system goals,\Such as performance goals (e.g. accuracy, precision and sensitivity), and ensure that no
data bias_has'been introduced to the system (e.g. Microsoft Tay chatbot[32]). The result of this testing
mdy be that the system is re-trained, perhaps with an updated training dataset.

6.1:8—Bias

Testing for bias of an Al-based system can be performed at two stages. First, bias can be detected (and
subsequently removed) in the training data through reviews, but this requires expert reviewers who
can identify possible features that create bias. Second, a system can be tested for bias by the use of
independent testing using bias-free testing sets. When we know that training data is biased, it may be
possible to remove the source of the bias (e.g. we could remove all information that provided clues to
the sex or race of the subjects). Alternatively, we could accept that a system includes bias (either implicit
or explicit) but provide transparency by publishing the training data.
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6.1.9 Transparency, interpretability and explainability

Testing the transparency of an Al-based system is largely concerned with determining whether there
is access to the algorithm and data it uses - and can be done through review (of the documentation and
referenced material, such as datasets).

Testing the interpretability of an Al-based system will be dependent on the audience as different
stakehaolders will hold varying levels of understanding of the underlying technology implemented in

the system.

Testing the explainability of an Al-based system ideally requires the target audience (or a représentatjve
set of testers) to perform the testing to determine how easy it is for them tounderstand how'the system
comes up with a range of results.

6.1.10 Complexity

The complexity of many Al-based systems creates a test oraclé problem; it may require several expefts
some time and discussion to agree on a single test case result from a complex Al-based system apd,
ideally, we would want to run many tests, which becomes infeasible if we:have to rely on experts|to
(slowly) generate expected results. A number of test techniques can beused to address the test oracle
problem, including A/B testing, back-to-back testing,and metamorphlc testing (see Clause 8 for a;t:re
details on these techniques).

W
)

N

.-

6.1.11 Probabilistic and non-deterministic’'systems 2
~

\

Due to the probabilistic nature of many-Al-based systems, there is not always an exact value that can|be

used as an expected result. For instance, when an agtowomous car plots a route around a stopped bug it

does not need to calculate the optimal solution, butrather a solution that works (and is safe) - and so we

accept sub-optimal, but good-enough solutions.’{™

The nature of how Al-based systems deterfine their routé tan also mean that they do not come |up
with the same result eachjtime (e.g. theiri¢alculation may be based on a random seed, which resultd in
different, but workable, routes each tlmé) This makes such systems non-deterministic, which resylts
in a lack of reproducibility and means-that any regression tests need to have smarter expected resylts
that take account inthe Varlablht_y‘due to the non‘{determinism.

In both cases, the uncertalnty\m actual results requires testers to derive more sophisticated expected
results, perhaps including tolerances, than for conventional systems. Probabilistic Al-based systems
may also require the te\ster to run the same test multiple times to provide a statistically significant
assurance that theéysrem is working correctly (like a Monte Carlo experiment).

6.1.12 The testoracle problem for Al-based systems

A recurrifig challenge when testing Al-based systems is the test oracle problem. Poor specificatiops,
complexy probabilistic, self-learning and non-deterministic systems make the generation of expected
resultsiproblematic.

Testing approaches and techniques that address the test oracle problem are described in Clause 8on
black-box testing.

6.2 Testing Al-based systems across the life cycle

6.2.1 General

This subclause briefly considers the different test levels (sometimes called test phases) across the life
cycle for an Al-based system. No assumption is made about the form of life cycle (e.g. agile, waterfall,
V, iterative) as these test levels should normally apply irrespective of the life cycle used. As with all
testing, the selection of testing at different levels should be based on the perceived risks and the costs
of testing. Typically, testing at earlier test levels (e.g. unit and integration testing) will be cheaper and
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risks that can be addressed at these levels should be tested as early as possible, however, some risks
(e.g. based on the characteristics of a complete system) can only be addressed by testing a complete
system and so will need to be addressed at the system test level (e.g. end-to-end scenario testing).

As described in 6.1.1, Al-based systems are typically made up of conventional components and Al
components; thus, this subclause focuses on such composite Al-based systems. It does not consider
the details of testing Al development frameworks (see 4.2.6), but it does consider the testing of the

re uli-nna- Al camnaonaonte (n o MI snaadalc) ATl hacad cuctnrc cnnm Aftan ha concidarnd 1nm thynn nawetc. AT
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component, data and user interface. The Al component is often tested similarly to a reusable software
component, while the user interface is tested the same as any user interface. However, the data for Al
baped systems may need to be tested slightly differently, as described in 6.2.2 to 6.2.7:

Fof details on the use of test environments across the life cycle, see 10.1.

6.2.2 Unit/component testing

Unjfit/component testing for non-Al components (e.g. user interface code) should be treated the same as

for traditional systems. v,
RN

Unlit/component testing of ML models corresponds to the evaluation and teS?ing stages of the ML
wqrkflow (see A.2.8 and A.2.10). As with traditional unit testing by developeﬁs, it is very rare that any
defects are reported at this level of testing - and the main purpose iste’improve the quality of the
deliverable model. S

)

.V‘
Where ML performance metrics (see A.8.1) have been set as acgéptance criteria (at the model level)
th¢n the ML model will be tested against these criteria at this/test level (the acceptance criteria may
foym part of the evaluation and tuning activity.that selects a,p}rticular ML model).

Coperage at the unit test level is traditionally concerned with either requirements or code coverage (e.g.
stqtement, branch and decision coverage). However, coverage of ML components can be measured by
th¢ representativeness of the datasets (training, validation and test)-\or, for neural networks, through
coyerage of the networks themselves, as describegd in 9.2.

p 3

)
Where data is pre-processed, unit tests can beused to check the pre-processing (e.g. ensuring raw data
is ¢orrectly scaled or normalized). &

. vus
v

s
6.2.3 Integration testing N

Y

p

Where an Al component is part of a larger Al-based system, it will need to be integrated into that
system. Thereare two main apbroaches to integrating such an Al-based component. First, and simplest,
it ¢an be treated as an erﬁb’edded component that is an integral part of the overall Al-based system.
Sefond, the Al component can be provided as a service (typically over the web, e.g. as a web service),
in which case it is provided independently of the rest of the Al-based system and is called whenever its
service is neededs

Inegration testing should be performed to ensure the Al component is correctly integrated with the
remainderfefithe Al-based system of which it is a part (e.g. checking interfaces and that communicated
daga is eqrrectly interpreted). For instance, tests should be performed to check that the correct image
fil¢ is‘passed to the model for object recognition and that itis in the format expected by the model. Tests
shpuld also be performed to check that the output of the model is correctly interpreted and used by the

rest of the system.

6.2.4 System testing

As with traditional systems, the system testing of Al-based systems is concerned with both functional
and non-functional testing. Non-functional characteristics that are tested typically include security
and performance efficiency (e.g. response time). Performance efficiency may be particularly relevant
if the Al component of the overall Al-based system is provided as a service rather than as an embedded
component. In addition to the quality characteristics that apply to traditional systems (e.g. as defined in
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ISO/IEC 25010[21]), those Al-specific characteristics (e.g. explainability) described in 5.1 should also be
considered for testing at this test level.

Where ML performance metrics (see A.8) have been set as acceptance criteria (at the system level) then
the Al-based system will be tested against these criteria at this test level.

6.2.5 System integration testing

System integration testing may be especially relevant for an Al-based system when the system\uses
large amounts of data from other systems or when the system interacts with.one or more loT devices.

6.2.6 Acceptance testing

Business acceptance criteria should be tested as part of acceptance‘testing. These criteria will typicqdlly
be focused on whether the Al-based system meets high-level business goals, such as those based [on
making or saving money, rather than on technical criteria, such.as accuracy of pesults from a model.

Where ML performance metrics (see A.8) have been set as acceptance crlterla/then the Al-based systgm
will be tested against these criteria at this test level. \'\

Humans can over-rely on technology and where Al .systems include;ﬂ}fuman-in-the—loop, the qualityf of
the combined human and automated outputs of the system under test'may not be correct. In such cases,
it can be important to measure the accuracy of user-approved mfbrmatmn such as predictions or pfe-

populated fields. =

O

6.2.7 Maintenance testing N\
W
Due to the problems associated, with system evalution, it is often necessary to run regular tests|to
ensure that the Al-based system is still meetingits'original acceptance criteria (business and technical).
Where these criteria are specified as perfor@fance metrics (see A.8), these tests may be automated.

When using regression testing as part ofimaintenance testing the probabilistic and non-determinigtic
nature of many Al-based systems can.c@use apparent testfails when the system is simply providing a
different, but acceptable, result. This'may mean thatthe expected results for regression testing may
need to be smarter than those used"for deterministic systems (e.g. with an included tolerance).

o

Care should be‘taken when testlng operational self-learning systems to ensure that tests do not cayse
the system'to perform unwanted learning from the testing.

3

7 { Testing andQA of ML systems

7.1 Introduction to the testing and QA of ML systems

Machinédearning systems are described in Annex A. This clause briefly identifies the quality assurarce
andtesting opportunities directly related to ML.

7.2 Review of ML workflow

The M workflow that 1S used snoutd be documented and followed when performing ML. Deviations
from the workflow described in Annex A should be justified.

7.3 Acceptance criteria

Acceptance criteria (including both functional and non-functional requirements) should be documented
and justified for use on this application. Performance metrics should be included for the model. As a
minimum the Al-specific characteristics (described in 5.1) should be considered and could be used as the
basis of a checklist used to determine the completeness of acceptance criteria for the Al-based system.
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7.4 Framework, algorithm/model and hyperparameter selection

The choice of framework, algorithm, model, settings and hyperparameters should be documented and
justified.

7.5 Training data quality

Boundary conditions are known to cause failures in all types of system (Al and non-Al) and should
belincluded in the training data. The selection of training data in terms of the size of the dataset.and
characteristics such as bias, transparency and completeness should be documented and justified and
copfirmed by experts where the level of risk associated with the system warrants it (e.g. for‘critical
sys$tems).

7.6 Test data quality

Thle criteria for the training data apply equally to the test data, with the caveat{ t'the test data must
belas independent of the training data as possible. The level of independence should be documented and
juqtified. Test data should be systematically selected and/or created and should also include negative
tedts (e.g. inputs outside the expected input range) and adversarial tests (see 7.8 for details).

7.7 Model updates ™

Whenever the deployed model is updated it should be re-tesfed.to ensure it continues to satisfy the
acgeptance criteria, including tests against implicit requiretnents that may not be documented, such
as|testing for model degradation (e.g. the new model rguns slower than the previous model). Where
appropriate, A/B testing or back-to-back testing shouldie performed against the previous model.

Q)

R \

An| adversarial example is where an extremel?) small change made to the input to a neural network
produces an unexpected (and wrong) largé)change in the output (i.e. a completely different result than
for the unchanged inputs) [331. Adversarial examples were first noticed with image classifiers. By simply
changing a few pixels (not visible to \bh’e human eye) it is possible to persuade the neural network to
change its image- classification to awery different object (and with a high degree of confidence). Note,
hoever, that adversarial examples are not limited to image classifiers, but are a known attribute of
nejiral networks in general@sd so apply to any use made of neural networks (and may also apply to
other fornis,of ML models),_y ™

7.8 Adversarial examples and testing

Adversarial examplestare generally transferable. This means that an adversarial example that causes
ong neural networkto fail will often cause other neural networks to fail that are trained to perform the
same task. Note-that these other neural networks may have been trained with different data and based
on|different axchitectures, but they are still prone to failure with the same adversarial examples.

Adversarial testing is often referred to as performing adversarial attacks. By performing these attacks
anf identifying vulnerabilities during testing, measures can be taken to protect against future failures
anf@&e the robustness of the neural network is improved.

Attacks can be made when training the model and then on the trained model (neural network) itself.
Attacks during training can include corrupting the training data (e.g. modifying labels), adding bad
data to the training set (e.g. unwanted features) and corrupting the learning algorithm. Attacks on the
trained model can be white-box or black-box and involve identifying adversarial examples that will
force the model to give bad results.

With white-box attacks, the attacker has full knowledge of the algorithm used to train the model and
also the settings and hyperparameters used. The attacker uses this knowledge to generate adversarial
examples by, for instance, making small perturbations in inputs and monitoring which ones cause large
changes to the model.
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With black-box attacks, the attacker has no access to the model’s internal workings or knowledge of
how it was trained. In this situation, the attacker initially uses the model to determine its functionality
and then builds a ‘duplicate’ model that provides the same functionality. The attacker then uses a white-
box approach to identify adversarial examples for this duplicate model. As adversarial examples are
generally transferable, the same adversarial examples will normally also work on the (black-box) model.

7.9 Benchmarks for machine learning

Ideally experts would be used to evaluate each new ML system, but that’s nermally too expensilve.
Instead, “representative” industry-standard benchmark suites are available, which include divefse
workloads to cover a wide range of situations (e.g. image classification, object detection,translatjon
and recommendation).

These benchmark suites can be used to measure the performance‘of"both hardware (using defirled
models) and software (e.g. to determine the fastest models). Software benchmarkrsuites can measyre
training (e.g. how fast a framework can train a ML model using-a-defined training dataset to a speciffed
target quality metric, such as 75 % accuracy) and inference(e.g. how fast a trained ML model dan

perform inference). e
X\

Examples of ML sets of benchmarks are provided (by”MLPerf(34], which provides benchmarks for
software frameworks, hardware accelerators and ‘ML cloud platforms and DAWNBenchl32], whicH is
a benchmark suite from Stanford University. The OAEI (Ontology Alignment Evaluation Initiative) is a
coordinated international initiativel3¢ with the goals of: 28

N S

— assessing strengths and weaknesses.of alignment/matohing systems;
— comparing performance of techniques; \\>

— increasing communication among algorithm.developers;
\

4

— improving evaluation techniques; RS,
— helping to improve-the work on ont(;}o\gy alignment/matching.
N

These goals are cachieved througf’[ the controlled ‘experimental evaluation of the techniqules’
performances. \ 3

0‘\

\l

8 Black-box testing/o’f AI-based systems
3
8.1, Combinatofialtesting

To prove, by ddynamic testing, that a specific test item meets all requirements under all giyen
circumstances; then all possible combinations of input values in all possible states would need|to
be tested\This impractical activity is referred to as ‘exhaustive testing’. For that reason, in practjce
softwaré. testing derives test suites by sampling from the (extremely large) set of possible input valges
andétates. Combinatorial testing is one systematic (and effective) approach to deriving a useful subpet
of<combinations from this input spacel3Z],

The combinations of interest are defined in terms of parameters (i.e. inputs and environment conditiofs)

amdthe vatues these parameters tam take- Where ummerous parameters {eachr with mummerous discrete
values) can be combined, this technique enables a significant reduction in the number of test cases
required, ideally without compromising the defect detection ability of the test suite.

ISO/IEC/IEEE 29119-4[38] defines several combinatorial testing techniques, such as all combinations,
each choice testing, base choice testing and pairwise testing. In practice pairwise testing is the most
widely used, mainly due to ease of understanding, ample tool support and research showing that most
defects are caused by interactions involving few parameters(3Z],

The number of parameters of interest for an Al-based system can be extremely high, especially when
the system uses big data or interacts with the outside world, such as a self-driving car. Thus, a means
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of systematically reducing the almost infinite number of possible combinations to a manageable subset
by using a combinatorial testing technique, such as pairwise testing, is extremely useful. In practice,
even the use of pairwise testing can still result in extensive test suites for such systems and the use of
automation and virtual test environments (see 10.1) often becomes necessary.

Using self-driving cars as an example, at a high level the scenarios for system testing need to consider
both different vehicle functlons and the env1ronments 1n whlch they are expected to operate. Thus

crijiise control, lane keeplng assistance, lane change a551stance trafflc llght a551stance etc) along
with environment constraints (e.g. road types and surfaces, geographic area, time-of day, weather
conditions, traffic conditions, visibility, etc.). In addition to these parameters, inputs from sensors
shpuld be considered at varying levels of effectiveness (e.g. the input from a vidéo camera will degrade
asfa journey progress and it gets dirtier or the accuracy of a GPS unit will change as different@ymbers
of patellites come into and go out of line of sight). Research is currently unclear on the necéssary level
of [rigour that would be required for the use of combinatorial testing with safety-critical Al-based
systems such as self-driving cars (e.g. pairwise may not be sufficient), but it is known that the approach
is ¢ffective at finding defects and can also be used to estimate the residual level of ri$k

X %

8.2 Back-to-back testing %

In |back-to-back testing, an alternative version of the system (e.g. already existing, developed by a
diffferent team or implemented using a different programming language) is used as a pseudo-oracle
to [generate expected results for comparison from the same test 1np1Its This is sometimes known as
differential testing.

O

As|such, back-to-back testing is not a test case)generation tethinique as test inputs are not generated.
Only the expected results are generated automatically by the‘\ﬁseudo-oracle (the functionally equivalent
system). When used in partnership with.tools for generating test inputs (random or otherwise) it
befomes a powerful way to perform high-volume autpniated testing.

When back-to-back testing is used.to support fufictional testing,.the pseudo-oracle does not have to
meet the same non-functional‘constraints as t.h system under, test. For instance, the pseudo-oracle
cofild run far slower than is\required for the system under. test. It is also not always necessary for
th¢ pseudo-oracle to be @ complete fungtionally equivalent ;system, as back-to-back testing can be
pefformed with a pseudo-oracle that is,gn\l'y equivalent to part of the system under test.
L

In|the context of ML, it is possibleyto use different frameworks, algorithms and settings to create
pseudo-oracles (in'some situatignsitis even possible to create a pseudo-oracle using conventional, non-
Al}software). ‘A known problentwith the use of pseudo-oracles is that for them to work well they should
be[completely independent pf'the software under test. With so much reusable, open source software
bejng usedto develop Al-based systems, this independence can be easily compromised.

8.3 A/Btesting

A/B testing is,a statistical testing approach that allows testers to determine which of two systems
pefforms Betterl32l. It is often used for digital marketing (e.g. finding the email that gets the best
regponselin client-facing situations.

As| amexample, A/B testing is often used to optimize user interface design. For instance, the user

interface designer hypothesises that by changing the colour of the buy button from the current red
to blue, that sales will increase. A new variant of the interface is created with a blue button and the
two interfaces are assigned to different users. The sales rates for the two variants are compared and,
given a statistically significant number of uses, it is possible to determine if the hypothesis was correct.
If the blue button generated more sales, then the new interface with the blue button would replace
the current interface with the red button. This form of A/B testing requires a statistically significant
number of uses and can be time-consuming, although tools (often using Al) can be used to support it.

A/B testing is not a test case generation technique as test inputs are not generated. A/B testing is a
means of solving the test oracle problem by using the existing system as a partial oracle. By comparing
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the new system with the current system, it is possible to determine if the new system is better in some
way. When used for digital marketing, the measure of success may be more sales, but for an Al-based
system, such as a classifier, the performance metrics, such as accuracy, sensitivity and recall, could be
used (see A.8).

A/B testing can be used whenever a component of an Al-based system is updated, as long as acceptance
criteria (e.g. ‘specified performance metrics must improve or stay the same’) are defined and agreed.

1£ A ID tactinag ic anbonaatnd thoan i+ ~qan ho vnond for tncting (‘r\]F]nr\vnlhn Al bhacad cuctamec ogivunan th hat
1

T 1Y D oot g oo at oot ettt o Cot ot oo T oo tootrT CIr-recor Tt T oo ooy ot o, gTv eI ¢

valid acceptance criteria are set, by comparing the new performance of the system with its previqus
performance and reverting to the previous version if the self-learning has, not improved the systgm
performance.

8.4 Metamorphic testing

Metamorphic testing[40l[41] js an approach to generating test cases that deals, ifpart, with the tpst
oracle problem often found with Al-based systems, where it is difficult to determine if a test has pasged
or failed (e.g. because of complexity, non-determinism and probabilistic systems). The main differernce
between test cases generated using metamorphic testing.and conventional tést case design techniqites
is that the expected results in metamorphic testing may.not be a fixed‘value, but, instead, are defirfed
by a relationship with another expected result. A
/ >

Metamorphic testing uses metamorphic relations.to generate fo«llow -up test cases from a source tpst
case that is known to be correct. A metamorphic relation fot -the software under test describes hpw
a change in the test inputs from the source.test case to thefollow-up test case affects a change [or
not) in the expected outputs from the source test case tothe follow-up test case. These metamorphic
relationships that are expected to hold can be though‘g\l}f as partial oracles for the tests conducted.

EXAMPLE1 A test item measures the distance betiyeen a start and end point. The source test case has test
inputs A (start point) and B (end/point) and an expected result C (distance) from running the test case. The
metamorphic relation states that,if the start andzend points are swapped, then the expected result remajns
unchanged. Thus, a follow-up-test case can be gé'nerated with B as'the start point, A as the end point and C as the

distance. X
p )

)
EXAMPLE 2 A test item predicts the ﬂggof death for ancindividual based on a set of lifestyle parametery. A
source test case has'various test input§,including 10 cigarettes smoked per day, and an expected result of age(58
years from running the test case. The-metamorphic relation states that if a person smokes more cigarettes, then
their expectedage of death will pmbably decrease (and not increase). Thus, a follow-up test case can be generated
with the sameinput set ofllfesty‘le parameters, except with the number of cigarettes smoked increased to 20 per
day. The expected result (the-predicted age of death) for this follow-up test case can now be set to less than or
equal to 58years. N

The_expected resuqt'for the follow-up test case will not always be an exact value but will often|be
described as a-function of the actual result achieved by executing the source test case (e.g. expecfed
result for folow=up test case is greater than the actual result for source test case).

A singlé)metamorphic relation can often be used to derive multiple follow-up test cases (e.gl a
metamorphic relation for a function that translates speech into text can be used to generate multiple
follow*up test cases using the same speech input file at different input volume levels but with the same
text as the expected result). If metamorphic relations are stated formally (or semi-formally) and soufce
test cases are provided, then it should be possible to automate the generation of follow-up test cages,

n]fhnngh it is not pnccih]p to automate the generation of the mpfnmnrphir relations which requires
some domain knowledge.

The process for performing metamorphic testing is:
a) Construct metamorphic relations (MRs)

Identify properties of the program under test and represent them as metamorphic relations
between test inputs and expected outputs, together with some method to generate a follow-up test
case based on a source test case.
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b)

Review MRs
Review and confirm MRs with customers and/or users.
Generate source test cases

Generate a set of source test cases (using any testing technique or random testing).

av
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Generate {olfow-up Test Cases
Use the metamorphic relations to generate follow-up test cases.
Execution of metamorphic test cases

Execute both the source and follow-up test cases, and check that the outputs do not vielate the
metamorphic relation. Otherwise, the metamorphic test case has failed;.indicating a bug:

tamorphic testing has been used on many types of traditional software, as well as,successfully in
vide variety of Al-based application areas, such as bioinformatics, web services, machine learning
ssifiers, search engines and security. Research shows that only 3-to 6 diverse iietamorphic relations
h reveal over 90 % of the faults that could be detected usinga traditional test ofaclel42],

7N
v
4

b Exploratory testing

5t design and execution can be conducted in ahumber of ways,'é’epending on the needs of each
ject. It can be scripted or exploratory. In practice, a combinatigy-of scripted and exploratory testing
typically used, as scripted testing ensures.required test ceverage levels are achieved and better
bports automated testing, while exploratory testing allews for creativity and the rapid execution
tests. When testing Al-based systems, exploratory testing is often found to be beneficial due to its
tability when specifications are poor.or lean (such ag‘in agile development).

exploratory testing, tests are designed and exécuted on the fly, as the tester interacts with and
rns about the test item. Session sheets are oftén used to structure’exploratory testing sessions (e.g.
setting a focus and time limits on each te&h session). These same session sheets are also used to
bture information about.what was tested, and‘any anomaleus behaviour observed. Exploratory tests
e often not wholly unscripted, as high-level test scenarios-(sometimes called "test ideas") are often
cumented in the session sheets to pravide a focus for the‘exploratory testing session.

‘\

p

White-box testing of 1\1éural networks

| Structure of a neuq'al network

heural network/is\a computational model inspired by the neural network in a human brain. It
mprises a number of layers of connected nodes or neurons, as shown in Figure 3. Note that in this

cl

use we wil]l ise as our example a feedforward neural network, which was the first and is the simplest

type of artifigial neural network - the only extra complexity we will add is that we will consider a
nefwork with multiple layers - known as a multi-layer perceptron (or deep neural net as it has hidden
layfers).

34
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Figure 3 — Deep neura@
\
The input nodes receive information from the outside y{t fm (e.g. each input may be a value for a pikel
in an image), and the output nodes provide informationto the outside world (e.g. a classification). The

nodes in the hidden layers have no connections to t}Q tside world and perform the computations that
pass information from the input nodes to the oq{@t nodes.

As shown in Figure 4, each neuton accepts igg@values and generates outputvalues, known as activatjon
values (or output vectors); which can be itive, negative-or zero (with a value of zero, a neuron has
no influence on downstream neurons) h connection has a weight (these change as the networl is
trained) and each neuron has a bias-(iote that the bias here is quite different from the bias associated
with unfairness described in Claug% 5.1.5). The activation values are calculated by a formula (knownfas
the activation function) based &Q.t e input activation values, the weights of the input connections gnd
the bias of théneuron. \\

/

Figure 4 — Neuron activation values

For supervised learning, the network learns by use of backward propagation. Initially all nodes are
set to an initial value and the first input training data is passed into and through the network. The
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output is compared with the known correct answer and the difference between the calculated output
and the correct answer (the error) is fed back to the previous layer of the network and is used to modify
the weights. This backward error propagation goes back through the whole network and each of the
connection weights is updated as appropriate. As more training data is fed into the network it gradually
learns from the errors until it is considered ready for evaluation with the validation data, which will
determine the performance of the trained network.

Test coverage measures for neural networks

9.2.1 Introduction to test coverage levels

Traditional coverage measures are not really useful for neural networks as 100 %, statement coverage is
typically achieved with a single test case. The defects are normally hidden in‘the neural network itself.
s, different coverage measures have been proposed based on the activation values of the neurons
(o1 pairs of neurons) in the neural network when the neural network is.tested.

Having measures of coverage of the neural network allows testers tosmaximize coverage, which has been
shpwn to identify incorrect behaviours in Al-based systems, such-as'self-driving cax Systems[43][44],

9.2.2 Neuron coverage 9%

x

Neuron coverage for a set of tests is defined as the proportion of activa_téd neurons divided by the total
number of neurons in the neural network (normally expressed as a pértentage). For neuron coverage, a
nefiron is considered to be activated if its activation value exceedgzero.

N
9.2.3 Threshold coverage I

Thireshold coverage for a set of tests.is. defined as thig: ]z;roportion of neurons exceeding a threshold
activation value divided by the totallnumber of neurons in the neural network (normally expressed as
a percentage). For threshold coverage, a thresholdactivation value between 0 and 1 is chosen as the
th e[ﬂ]old value. Note that this threshold coveragé corresponds to.‘neuron coverage’ in the DeepXplore
toglld4l, NN

A

B - A X
9.2.4 Sign change coverage >
"\

Sign change coverage for a set oftasts is defined as the proportion of neurons activated with both
pokitive and negative activation values divided by the total number of neurons in the neural network
(ngrmally expressed as a petcentage). An activation value of zero is considered to be a negative
activation-valuel43], O

9.2.5._~/Value change’coverage

Value change coyerage for a set of tests is defined as the proportion of neurons activated where their
activation valyes differ by more than a change amount divided by the total number of neurons in the
nefiral network (normally expressed as a percentage). For value change coverage, a value between 0
anf 1 should be chosen as the change amountl43],

D

9.2.6- Sion-sion coverage
(=) (=) (=]

Sign-Sign coverage for a set of tests is achieved if each neuron by changing sign (see 9.2.4) can be shown
to individually cause one neuron in the next layer to change sign while all other neurons in the next
layer stay the same (i.e. they do not change sign). In concept, this level of neuron coverage is similar to
modified condition/decision coverage (MC/DC)43],
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9.2.7 Layer coverage

Coverage measures can also be defined based on whole layers of the neural network and how the
activation values for the set of neurons in a whole layer change (e.g. absolutely or relative to each other).

Further research is needed in this area.

9.3 Test effectiveness of the white-box measures

There is currently little data on the test effectiveness of the different white-box coverage measures
the white-box testing of neural networks. However, it is generally true that critéria requiring more’te
will find more defects than those that require fewer tests, so allowing the relative effectiveness of
measures to be deduced. Several subsumes relationships can be derivedfrom the coverage measu
described in 9.2.1. to 9.2.5. All other measures subsume neuron coverage and sign-signycoverage a
subsumes sign change coverage. The full subsumes hierarchy for theseis shown in-Figure 5. Where
arrow points from one measure to another, it means that if the first measure is fully achieved, then {
second measure is automatically achieved. For instance, it shows.that if threshold coverage is achiev
then neuron coverage is automatically achieved.

Sign-sign

Figure 5 — White-bo& neural network subsumes hierarchy
%)

Although easy to understand, achieving high levels of neuron coverage can normally be achieved us
only a few test cases, so limitingFits test effectiveness. Early results for threshold coverage appear

show that this‘'may be a usefulimeasure for generating tests that cover defect-inducing corner cases, Elt

the threshold value may need'to be set individually for each neural network. For value change covera
higher values for the «¢hange amount will naturally require more test cases. Sign-sign coverage
normally the mosta’go‘rous of the coverage criteria specified herel42],

9.4 White-bex'testing tools for neural networks

Commercial tools are not currently available to support the white-box testing of neural networ
howeverthere are several research tools, including:

— \DeepXplore - specifically for testing deep neural nets, proposes a white-box differential test
(back-to-back) algorithm to systematically generate adversarial examples that cover all neurong
the network (threshold coverage)l44l.
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— DeepTest - systematic testing tool for automatically detecting erroneous behaviours of cars driven

by deep neural netsl46l, which supports the sign-sign coverage for DNNs.

— DeepCover - provides all the levels of coverage defined in this clausel42l.
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10 Test environments for Al-based systems

10.1 Test environments for Al-based systems

Th

e test environments for Al-based systems have much in common with those for conventional

systems: typically, the development environment at unit level and a production-like test environment
at system and acceptance levels. ML models, when tested in isolation, are typically tested within their

de

relopment framework, as described in A.2.9.

Thlere are two main factors that affect the selection of test environments for: Al-based systems

frg

aug

m those required for conventional systems. First, the context in which Al-based-systems, such as
onomous systems, operate means their environment can be large, complex and.constantly changing.

Thiis can make testing in the real world extremely expensive if the full rangeof'possible envitonments

ar
wi
ha
ne

Vil

e to be tested, the test environments are expected to be realistic and the testing is to be.performed
thin a sensible timescale. Second, those Al-based systems that can physically interagt-with humans
e a safety component, which can make testing in the real world dangerous. Both fac¢tor's indicate the
ed for the use of virtual test environments. X
RN
tual test environments provide the following benefits, among others: @

The use of a virtual environment ensures that dangerous scenarios cali‘bé tested in safety without
causing damage to the system under test or any-objects in its en.vironment such as vehicles,
buildings, animals and humans. Tests in virtual environments are {yplcally also better for the real-
world environment.

O

Virtual environments do not need to run-n real-time - they can be run much faster with suitable
processing power - meaning that many tests can h&un in a short time period, potentially
decreasing time-to-market by a large amount. A single system can also be tested on many virtual
test environments running in parallel, perhaps in theicloud.

Virtual environments can be-cheaper to set d‘p’énd run than(their real-world counterparts. For
instance, testing mobile phone communications across widely different urban environments is far
cheaper when performed.in a laboratory {with virtual phones; transmitters and landscapes rather
than with real phones being driven around a mix of locations, largely because only the relevant
features need to be included in the virtual test environmentl4Z], However, it should be noted that
some virtual test:énvironments:must be truly representative and closely match the real-world in
some respects. For instance, the tésting of pedestrian avoidance in autonomous vehicles can require
high levels of image representativeness

Sometimes, creating nusual (edge-case) scenarios can be very difficult in the real world and
virtual environmentsgllow the creation of such scenarios (and the ability to run multiple variants
of these unusual scenarios many times). Virtual environments provide the tester with a greater
level of controlthan they would have with real-word testing. These tests can also incorporate a level
of randomness,such as by including Al-based humans in autonomous car testing.

By supporting the simulation of hardware, virtual environments allow systems to be tested with
hardware components even when these components are not physically available (perhaps they
have-not been built yet) and they allow different hardware solutions to be trialled and compared
inexpensively.

Virtual environments provide excellent observability, so that all aspects of the system under test’s
response to a scenario can be measured and, where necessary, subsequently analysed.

Virtual environments can be used to test systems that cannot be tested in their real operational
environment, such as a robot working on the site of a nuclear accident or a system to be used for
space exploration.
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Virtual testing can be performed on simulators built specifically for a given system, but reusable

simulators for specific domains are available both commercially and open source, for instance:

— Morse, the Modular Robots Open Simulation Engine, a simulator for generic mobile robot simulation

(single or multi robots), based on the Blender game enginel48l;

— Al Habitat, a simulation platform created by Facebook Al, designed to train embodied agents (such

as virtual robots) in photo-realistic 3D environments49l:;

— DRIVE Constellation, an open and scalable platform for self-driving cars from NVIDIA baséd o
cloud-based platform, capable of generating billions of miles of autonomous vehicle testing22l,

10.2 Test scenario derivation

For the systematic testing of an Al-based system, test scenarios need.to be generatedto test individ
Al components, the interaction of these components with the rest of the system, the’complete systen
interacting components, and the system interacting with its environment.

Test scenarios can be derived from several sources: 1
— System requirements

— User issues Q).
— Automatically reported issues (e.g. for autonomous system‘g)
— Accident reports (e.g. for physical systems) N

i AW
— Insurance data (e.g. for insured systems, such.atitonomous cars)
N\

— Regulatory body data (e.g..collected throgglil'egislation)

— Testing at various levels (e.g. test failh}ES or anomalies on the test track or on real roads cofild

generate interesting.test scenarios ofan autonomous-car at other test levels, while a sample
test scenarios.runon the virtualitést environment should also be run on real roads to valid
representativéness of the VirtQal test environment)

An option using-combinatorialtesting for the generation of test scenarios for the system testing
autonomous.cars is describedin 8.1. Metamorphic testing (see 8.4) and fuzz testing could also be ug
to generate test scenarios:

A3
10.3 Regulatory(test scenarios and test environments

In the case of-safety-related Al-based systems, some level of regulation can apply to the syster
Two options are generally available to government for this regulation; it can allow the developm
organization to self-regulate or a regulatory body is set up to provide independent assurance that {
systems.meet minimum standards (a certification approach).

[fa-eertification approach is followed, then the testing approach will need to be shared between f{
régulatory body and those providing the systems for certification (as it is for the crash testing of cal

1al
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A core part of the approach will be shared test environment definitions and shared test scenarios t}

can be run using test automation on those environments. The core set of shared test scenarios will need
to be parameterized to allow new scenarios to be generated by varying the parameter values for each
test to prevent overfitting and the regulatory body will also keep a set of private test scenarios that are
not shared. The parameterization and the private scenarios should ensure that systems are not built

just to pass known tests, and this approach also allows the regulatory body to add new scenarios
they become aware of potential problem situations from actual use of the systems.
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Annex A

Machine learning

A.l Introduction to machine learning

M4chine learning (ML) is a form of Al, where the Al-based system learns its behaviour from provided
trdining data, rather than being explicitly programmed. The outcome of‘ML is known .ds\a model,
wlich is created by the Al development framework using a selected algorithm and the ¢raining data;
this model reflects the learnt relationships between inputs and outputs. Often the created model, once
initially trained, does not change in use. In contrast, in some situations,the created Ipodel can continue
to [learn from operational use (i.e. it is self-learning). Example uses of ML include image classification,
pldying games (e.g. Go), speech recognition, security systems(malware detection), aircraft collision
avpidance systems and autonomous cars. )

"
e &

Y >
Thiere are three basic approaches to machine learning (ML), as shown in Eigiire A.1.

n

Machine

learning O
N
I | _D\¥ I
. | . | .
Supervised || Unsupervised SMINGVI{]{v=I0 1
learning learning ’ learning

Classification

~

N
("Figure A.1 — Forms of machine learning

th supervised MEthe algorithm creates the model based on a training set of labelled data. An example
of supervised ML would be where the provided data were labelled pictures of cats and dogs and the
cr¢ated model 9sexpected to correctly identify cats and dogs it sees in the future. Supervised learning
solves two forms of problem - classification problems and regression problems. Classification is where
th¢ model-cldssifies the inputs into different classes, such as ‘yes - this module is error-prone’ and ‘no -
this module is not error-prone’. Regression is where the model provides a value, such as ‘the expected
number of bugs in the module is 12’. As ML is probabilistic, we can also measure the likelihood of these
classtreats . . :

With unsupervised ML the data in the training set is not labelled and so the algorithm derives the
patterns in the data itself. An example of unsupervised ML would be where the provided data was about
customers and the system was used to find specific groupings of customers, which may be marketed to
in a specific manner. Because the training data does not have to be labelled, it is easier (and cheaper) to
source than the training data for supervised ML.

With reinforcement learning a reward function is defined for the system (agent), which returns a
higher reward when the system gets closer to the required behaviour. Using feedback from the reward
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function, the system learns to improve its behaviour. An example of reinforcement learning would be a
route planning system that used a reward function to find the shortest route.

ISO/IEC 23053[51] describes a framework for Al-based systems using machine learning and covers some
of the material in this annex in more detail.

A2 The machine learning workflow
: : : N
A.2.1 Machine learning workflow overview Qq/

35

The activities in the machine learning workflow are shown in Figure A.2: ,\

/
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\
CFlgure A.2 — Machine learning workflow

The activities in tthchine learning workflow are described in A.2.2 to A.2.13.

A2.2 Unde\é}ﬁd the objectives

The pur &f the ML model to be deployed needs to be understood and agreed with the stakeholders
to ens ignment with business priorities. Acceptance criteria (including performance metrics - gee
4. 1) uld be defined for the developed model.

,ﬁ 3 Select a framework
% itall Al dazalosnoa ant €00 0 L dd L 1 d Lo 2|

xle ath L a3 3
n StHtanre—7rr TV CTOPTITCTICIT HreworrSiotra1He o\.u.\.l.\.u OaSCOUOTT CIIC UUJ\,\,LIVLD' cl\.\.\.l.ll.all\.\. €¥ AI.\. 1a

and business priorities. These frameworks are introduced in 4.2.6.

1%

A.2.4 Build and compile the model

The model structure (e.g. number of layers) should be defined (it will typically be in source code, such
as Python). Next, the model is compiled, ready to be trained.
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A.2.5 Source the data

The data used by the model will be based on the objectives. For instance, if the system is a real-time
trading system, the data will come from the trading market. If the system is analysing customers’ retail
preferences for a marketing campaign, then the organization’s customer big data will be the source.

The data used to train, tune and test the model should be representative of the operatlonal data

initial training of the model (e.g. see Kaggle datasets at httDs //Www. kaggle. com/datasets) However,
ray data normally needs some pre-processing.

A.2.6 Pre-process the data

Thee features in the data that will be used by our model need to be selected - these are the.attributes
or|properties in the data that we believe are most likely to affect the outcome of the prediction.
Training data may need to be managed to remove features that are not expected (or we’ don’t want)
to [have any effect on the resultant model - this is called feature engineering or feature selection. By
removing irrelevant information (noise), feature engineering can reduce overall traiping times, prevent
overfitting (see A.4.1), increase accuracy and make models more generalizable, -{‘

—

Repl world data is likely to include outlier values, be in a variety of form;rts be missing coverage of
important areas, etc. Thus, pre-processing is normally required before it:cari-be used to train (and test)
the model. Pre-processing includes conversion of data'to numeric Values' ‘normalizing numeric data to
a dommon scale, detection and removal of outliersiand noisy data, reducmg data duplication and the
adfition of missing data. O

N\
A.2.7 Train the model »

A ML algorithm (e.g. see machine learning technique 4n 4.2, 4.2.4) uses the training data to create and
trdin the model. The algorithm should,be selected based on the objectives, acceptance criteria and the

available data.
\

Ngte that the activities of training, evaluatiod<and tuning are shown explicitly in Figure A.2 as being
iterative, however ML is a highly iterative. workflow and it,may be necessary to return to any of the
eaflier activities, such.as-sourcing and d pre- processing/the-data as a result of later activities (e.g.
evaluating the model),

\l

)

p

A.2.8 Evaluate the model

Thle trained.model is eva ated against the agreed performance metrics using validation data; the
regults are then used to Improve (tune) the model. Visualization of the results of the evaluation is
nofmally-required and different ML frameworks support different visualization options.

In |practice severalmodels are typically created and trained, and the best one chosen based on the
regults of the eyaldation and tuning.

A.2.9 Tune the model

e results from evaluating the model against the agreed performance metrics are used to adjust

tuning, where the training activity is modified (e.g. by changing the number of training steps or by
changing the amount of data used for training), or attributes of the model are set (e.g. the number of
neurons in a neural network or the depth of a decision tree).

A.2.10 Test the model
Once a model has been trained, evaluated, tuned and selected it should be tested against the test

dataset to ensure that the agreed performance criteria are met. This test data should be completely
independent of the training and validation data used up until this point in the workflow.
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