INTERNATIONAL ISO/IEC
STANDARD 23009-6

First edition
2017-12

Information technology -=<\Dynamiic
adaptive streaming over' HTTP
(DASH) —

Part 6:
DASH with server push and
WebSockets

Technologies de l'information — Diffusion adaptative dynamique sur
HTTP (DASH)=

Partie 6: DASH avec serveur de poussée et protocoles WebSocket

Reference number
ISO/IEC 23009-6:2017(E)

© ISO/IEC 2017

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

© ISO/IEC 2017, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +41 22 749 09 47
copyright@iso.org

www.iso.org

ii © ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

Contents Page
FFOT@WOTMooccccceeeesse e85 5588585555555 iv
IIMETOUICEIONL. ..ot 8885 v
1 S0P ... 1
2 NOTINATIVE FEEETE@IICESooooiooeee st 1
3 Terms, definitions, abbreviated terms and cOonventions ..., 1
3.1 Terms and definitions
3.2 (010 011=) 011 (0) 0 1SSt e SO
4 BaCKEIOUNM. ..ottt o 2
5 SPECHICALION STIUCTUIE..........c.cooooossss s s s 3
(DefINItIONS. ... ST
6.1 Data type definitions..
6.1.1 General..
6.1.2 PushType.........
6.1.3 PushDirective...
6. 1.4 PUSNACK .ot ssssseeeeeesssper SNTrseeeeeesssssssseeessssssss s ssssssee s
6.1.5 URLLIST i 0y B
6.1.6 URLTemplate....
6.1.7 FastStartParams..
6.2 Push strategy definitions....
7 DASH server push over HTTP/2
7.1 PushDirective DINAing. ... s e
7.2 PushAck binding
7.3 PUSIH CANCEL...ooooe s g
8 DASH server push over WebSocket
8.1 Message flow over WebSocket
8.2 WebSocket sub-protocol for MPEG-DASH
8.2.1 MPEG-DASH)WebSocket frame format and semantics
8.2.2 Definitioh.of WebSoCKet Streams...........ocovoovvecoieeeeseeeesseeeessoeeeseeeesssseee oo
8.3 WebS0CKet TNESSAZE COUES. ...t
8.4 WebSocketmessage definitions
8.4.1 MPD request (ClIENt = SEIVEI).....ccoiiesies e
8.4.2 C;Segment reqUeSt (ClIENT = SEIVET) ...
8.4:3,~" MPD received (server = client)...............
844 Segmentreceived (server — client)
84.5 End of stream (EOS) (Server = client) ...
8.4.6 Segment cancel (ClIENT — SEIVET) ...
8.5 MPEG-DASH sub-protocol regiStration. ...
Annex'A (informative) CONSIAEred TS CASES..............oiiiiri i e 20
\NNex B (Informative) system architecture 10T HT TP/ 2 e 21
Annex C (informative) Examples of HTTP/2 client/server behaviour ...
Annex D (informative) Examples of WebSocket client/server behaviour ...

Annex E (informative) Protocol upgrade and fallback procedure for WebSocket

Annex F (informative) Examples of URL list and URL template..........ccoenensnnnns
Annex G (informative) EXamples of fast STATT ...
Annex H (informative) Use of DASH server push with the switching element.................c 34
BIDIIOGIAPIIY ... 35

© ISO/IEC 2017 - All rights reserved iii

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committe

ISO/IEC[TC 1.

)

The profcedures used to develop this document and those intended for its further maintenance are
describgd in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for t
different types of ISO documents should be noted. This document was drafted in accorddnce with t
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

=

Attention is drawn to the possibility that some of the elements of this document may’be the subject ¢
patent rfghts. ISO shall not be held responsible for identifying any or all such patent rights. Details
any patgnt rights identified during the development of the document will be jin\the Introduction and/d
on the I§0 list of patent declarations received (see www.iso.org/patents).

= =n

(o

Any trade name used in this document is information given for the convenience of users and does nq
constitute an endorsement.

For an gxplanation on the voluntary nature of standards, the¢meaning of ISO specific terms anfd
expressions related to conformity assessment, as well as information about ISO's adherence to t

World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the followi&E
URL: www.iso.org/iso/foreword.html.

This ddcument was prepared by Technical Committee ISO/IEC JTC 1, Information technolog},
Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

Alist of pll parts in the ISO/IEC 23009 series\¢an be found on the ISO website.

iv © ISO/IEC 2017 - All rights reserved

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/foreword.html
https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

Introduction

Dynamic Adaptive Streaming over HTTP (DASH) is intended to support a media-streaming model for
delivery of media content in which the control lies exclusively with the client.

This document specifies carriage of MPEG DASH media presentations over full duplex HTTP-compatible
protocols, particularly HTTP/2 (version 2 of the HTTP protocol as defined by the [ETF in Reference [8])
and WebSocket (WebSocket protocol as defined by the IETF in RFC 6455). This carriage takes advantage
of the capabilities of these protocols to optimize delivery of MPEG DASH media presentations.

© ISO/IEC 2017 - All rights reserved v

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

INTERNATIONAL STANDARD ISO/IEC 23009-6:2017(E)

Information technology — Dynamic adaptive streaming
over HTTP (DASH) —

Part 6:
DASH with server push and WebSockets

1 Scope

his document specifies carriage of MPEG-DASH media presentations over full duplex HT TP-compatible
rotocols, particularly HTTP/2 and WebSocket. This carriage takes advantage-of the featurgs these
rotocols support over HTTP/1.1 to improve delivery performance, while stillimaintaining backwards
ompatibility, particularly for the delivery of low latency live video.

QT = =

Normative references

[NS]

—

he following documents are referred to in the text in such a~way that some or all of their| content
onstitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced décument (including any amendments)|applies.

Q

]

EEE 1003.1-2008, IEEE Standard for Information Techhology — Portable Operating System [nterface
(POSIX), Base Specifications, Issue 7

IETF RFC 3986, Uniform Resource Identifiers (URI): Generic Syntax, January 2005

IETF RFC 6455, The WebSocket Protocol, December 2011

IETF RFC 7158, The JavaScript Object-Notation (JSON) Data Interchange Format, March 2013
IETF RFC 7231, Hypertext TransferProtocol (HTTP/1.1): Semantics and Content, June 2014

3 Terms, definitions;,-abbreviated terms and conventions

3.1 Terms and definitions

Hor the purposes of this document, the following terms, definitions, abbreviated terms and
donventions$apply.

IO andEC maintain terminological databases for use in standardization at the following addresses:

—CAEC Electropedia: available at http://www.electropedia.org/

— ISO Online browsing platform: available at http://www.iso.org/obp

3.1.1

push acknowledgement

Push Ack

response modifier, sent from a server to a client, which enables a server to state the push strategy (3.1.3)
used when processing a request

3.1.2

push directive

request modifier, sent from a client to a server, which enables a client to express its expectations
regarding the server’s push strategy (3.1.3) for processing a request

© ISO/IEC 2017 - All rights reserved 1

http://www.electropedia.org/
https://www.iso.org/obp
https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

3.1.3

push strategy

segment transmission strategy, that defines the ways in which segments may be pushed from a server
to a client

3.1.4
DASH server push
push
transmission of a segment from server to client based on a push strategy (3.1.3), as opposed to directly
in responsetoa client request

3.2 Cgnventions

NOTE In this document, data formats are described using the ABNF method as described in REC 5234.
STRING[= 1* VCHAR

INTEGER = 1* DIGIT

PPCHAR= $x21 / %x23-7E

SQUOTH= ¢x27

UCHARF $x21 / %$x23-7A / %$x7C / %$x7TE

and capabilities that are provided by the more recent Internet protocols such as HTTP/2 and WebSocket;
see Annex A for several illustrative use cases. Whiles"HTTP/2 and WebSocket are quite different ip

o
)
t
£,
2
=
@
<
o
=}
(=
=
=
g
%]
@
=
<
)
=
.
=
=
o
=t
o
a.
©
=
a
=)
=
=
s
=
=2
o
t+
®
o
(=
=
o
=
%)
L
o
g
o
=)
»
o
O
t
o
—
®
Q
c
o
%]
ot
o
O
=
o
o
©
g
o
=
©
=
or

multiplgxing of multiple data responses.

While i the case of HTTP/2 it is possible(to carry DASH presentations without additional suppor
these ndw capabilities can be used to réduce the transmission delay (latency). Also, both HTTP/2 an
WebSocket are designed to interoperate with existing HTTP/1.1 infrastructure, allowing for graceft
fallback|to HTTP/1.1 when the moreTrecent protocol is not available.

— I

The ovefall workflow of MPEG-DASH over these protocols is shown in Figure 1. The client and servdr
first initiate a media channel;-where the server can actively push data to the other (enabled by HTTP/P
server push or WebSocket iméssaging). The media channel may be established via the HTTP/1.1 protocgl
upgrade mechanism _@r\by some other means. After the connection is established, the DASH clien]t
request$ the media 6t the MPD from the server, with a URI and a push strategy. This strategy informls
the server abouthoiwv the client would like media delivery to occur (initiated by the server or initiated
by the client). @nceé the server receives the request, it responds with the requested data and initializegs
the pus$ cycle™as defined in the push strategy. Annex B shows a typical end-to-end video streaminig

system ¢vers HTTP/2 that can benefit from signalling and messages defined in this document.

Figure 1 shows an example DASH session wherein the client requests the MPD first and then the media
segments with a push strategy. Initialization data are pushed in response to a push strategy associated
to the MPD request. After receiving the requested MPD, the client starts requesting video segments
from the server with the respective DASH segment URL and a segment push strategy. Then, the server
responds with the requested video segment, followed by the push cycles as indicated by the segment
push strategy. Typically, the client starts playing back the video after a minimum amount of data is
received and then the aforementioned process repeats until the end of the media streaming session.

2 © ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

F-———————————-

F-—————————

ISO/IEC 23009-6:2017(E)

. I |
Client I I Server |
MPD URL +

4 N 4 N
l Push Directive | i |
Request MPD I I > Re(;fé;lelévs[fl) |
\ J I l \ J I
- \ I Push Ack + I . N |

MPD
Receive New MPD <€ l l Send MPD |
S | ! I S — I
I Initialization Data |
(N I I é N I
Receive Initialization < . Send Initialization I
Data v v Data
_ J |] \ J |
I Segment URL + I I
~ ™) : Push Directive I (~) |
= Receive Segment
Request Segment I l Request I
\ s | Push Ack + | X < [
Segment
e AL ’ | _Of ;
' Segment ™\~ .
Receive New | & | |
Send Segments

Segments I I [
| Segment | I
- / | N\ I \ I
r 2 | | |
Begin Playback I I I
.) I | |
| | |

Figure 1 — Overall flow of video streaming using DASH server push

w3 —

Q.S == e

3 Specification strueture

his document defines,the signalling and message formats for driving the delivery of MPH
hedia presentationsever full-duplex HTTP-compatible protocols. Details are provided for utili
ignalling over the-HTTP/2 (Clause 7) and the WebSocket (Clause 8) protocols.

nnex C provides examples of HTTP/2 client/server behaviour implementing signalling and

brmats defihed in this document. Annex D provides examples of WebSocket client/server bg
mplementing signalling and message formats defined in this document. Annex E illustrates tl
rotecel upgrade and fallback procedure for WebSocket. These informational annexes are pro
emonstrate the use of the specified signalling and message formats to build streaming systs

-+

6 Definitions

6.1 Data type definitions

6.1.1 General

1 1 . £ £ 3 1 A IS P £ 1 " s " 1
dRC dUVdIIldgt OI LT TUII-UuUpICXx CdpPdDIHILICS O LIIC UITUCTTY T LI dIISPOI't Pprototol.

G-DASH
ving this

message
thaviour
ne HTTP
vided to
bms that

Clause 6 describes a number of primitive data types (see Table 1) used to define the signalling over
protocols addressed in this document. Details for implementing these primitives for a given protocol
may be found in the subclause of this document defining that binding.

© ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

Table 1 — Definitions of primitive data types

Data type Base type Description

BinaryObject N/A An untyped binary object made up of 0 or more bytes.

Boolean N/A A true or false value.

MPD MPD An MPEG-DASH Media Presentation Description
(MPD), as defined in ISO/IEC 23009-1.

Null N/A An empty value.

PushAck Skring Aresponse Frem-theserveracknewdedginga

P2V AT
T T COPoOTTSETT Ot SIS o Py

request. The PushAck contains the accepted valiue$
for the push strategy specified in the PushDirective.
For details, see 6.1.4.

PushDi

rective String A directive describing the requested push’strategy
to be employed within the streamingsession. Fof
details, see 6.1.3.

Segmen|t Segment An MPEG-DASH initialization or media segment, a$
defined in ISO/IEC 23009-1,
String N/A A UTF-8 character string:
URI String A Uniform Resourceddentifier (URI), as defined in
RFC 3986.
URLLis|t String Alist of URLs. For-details, see 6.1.5.
URLTemplate String A URL template'and corresponding parameters thaf
describe a‘set of URLs. For details, see 6.1.6.
6.1.2 PushType
A PushType is the description of a push strategy. It contains a name identifying the push strategy and

possibly]
The for]
PUSH_T
PUSH_T
PUSH_Pj
PUSH_P/
Where,

'<URN>'
in Table

'OWS'is

its associated parameters.

hat of a PushType in the ABNF form is«as follows:

Y PE = PUSH_TYPE_NAME [OWS “%OWS PUSH_PARAMS]
Y PE_NAME = DQUOTE <URN= DQUOTE

ARAMS = PUSH_PARAMA#(-OWS ";" OWS PUSH_PARAM)
ARAM = 1*PPCHAR

syntax is defined in RFC 2141. Valid values for this URN according to this document are defined
3,

defined in RFC 7230, 3.2.3 and represents optional whitespace.

DILICT

The def

5 £ I DA ANC 3 ot 11 +1 A P T £ Lt 4 H 14 £
HITIUINUT T USTT_T ANATTS TS gTITCT TUTU dTTU W TITT UTTIITIUUIT OT TITW P USIT ST ATTEICTS WITITUUT dlly

limitation on their parameters. Each push strategy adds some restriction on the number and on the
definitions of the PUSH_PARAM instances used with it. Valid values for PUSH_PARAMS are defined in

Table 4.

EXAMPLE If the push strategy expects a parameter of type 'INTEGER', then there is only one 'PUSH_PARAM'
defined by 'INTEGER' as in 3.2. If it expects a parameter of type 'URLTemplate’, then there is only one 'PUSH_
PARAM' defined by 'URLTemplate' as in 6.1.6.

© ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

6.1.3 PushDirective

A PushDirective signals the push strategy that a client would like the server to use for delivery of
one or more future segments. A PushDirective has a type (described in Table 3) and depending on
the type, may have one or more additional parameters associated with it (described in Table 4).

In general, a client may signal one or more PushDirectives for a single message. The server may select
at most one of the provided push strategies. This mechanism allows for clients to interoperate with
servers that allow different push strategies and for forward compatibility, as the new types of push
strategies are introduced.

The format of a PushDirective in the ABNF form is as follows:
HUSH_DIRECTIVE = PUSH_TYPE [OWS “;” OWS QVALUE]
HUSH_TYPE = <A PushType defined in 6.1.2>

JVALUE = <a qvalue, as defined in RFC 7231>

Vhen multiple push directives are applied to a request, a client may apply a quality value (“gvalue”)
s is described for use in content negotiation in RFC 7231. A client-may apply higher qualitly values
b directives it wishes to take precedence over alternative directives-with a lower quality value. Note
hat these values are hints to the server and do not imply that the-server will necessarily chpose the
trategy with the highest quality value. If the quality value “gvalue” is not present, the defaulf quality
alue is 1,0.

< W ot o Q) =

4.1.4 PushAck

Push Acknowledgement (PushAck) is sent fromhe server to the client to indicate that thie server
htends to follow a given push strategy. At most,.oire Push Acknowledgment may be returned, indicating
he push strategy that is in effect at the server: A Push Acknowledgment, depending on the type, may
ave one or more additional parameters associated with it (described in Table 4).

oo il o il el >3

The format of the PushZAck in the ABNF form is as follows:
HUSH_ACK = PUSH_TYPE
Where PUSH_TYPE is defined-in 6.1.2.

4.1.5 URLList

oY

URLList describes a specific set of URLs as a delimited list. A client may use a list to gxplicitly
ignal the segments to be pushed during a push transaction. The list of URLs describes the sequence of
egments to bepushed within this push transaction.

wn_Wn

The URLLYVSt string format ABNF follows:

YRELIST = LIST_ITEM *(OWS ";" OWS LIST_ITEM)

LIST_ITEM = 1*PPCHAR

Each list element is formed as a URL as defined in RFC 3986. If the URL is in relative form, it is
considered relative to the segment being requested. See Annex F for examples of the URL list under
various scenarios.

6.1.6 URLTemplate

A URLTemplate describes a specific set of URLs via a template and the corresponding parameters
required to expand the template. A client may use a template to explicitly signal the segments to be
pushed during a push transaction. The string is formed as a list of individual URL templates, each of

© ISO/IEC 2017 - All rights reserved 5

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

which may be parameterized to signal one or more URL values. When fully evaluated, the complete list
of URLs describes the sequence of segments to be pushed within this push transaction.

The URLTemplate format is inspired by the “level 1” URI template scheme defined in IETF RFC 6570.

NOTE The above template mechanism may be used to describe URLs contained in the MPEG-DASH MPD,
whether they are formed using a SegmentTemplate or SegmentList. It is not possible to use URLTemplate to
describe URLs formed via SegmentTemplate when they use $Times$ variable, unless the time value of each
segment can be predicted or is described via SegmentTimeline, typically when @r is present and is not negative.

In additiet;es

idth parameter is an unsigned integer that provides the minimum number of characters to be
printed.|If the value to be printed is shorter than this number, the result shall be paddedwith zeros. The
value is pot truncated even if the result is larger.

The URITemplate string format ABNF follows:
URL_TEMPLATE = TEMPLATE_ITEM *(OWS ";" OWS TEMPLATE_ITEM)

TEMPLATE_ITEM = SQUOTE TEMPLATE_ELEMENT SQUOTE [OWS, %’ OWS “{* OWS TEMPLATH_
PARAM$ OWS “}"]

TEMPLATE_ELEMENT = CLAUSE_LITERAL [CLAUSE_VAR [CLAGSE_LITERAL]]
CLAUSE[LITERAL = 1*UCHAR

CLAUSE| VAR = “{%0” 1*DIGIT “d}" / “{}"

TEMPLATE_PARAMS = VALUE_LIST / VALUE_RANGE

VALUE_LIST = 1*DIGIT *(OWS "." OWS 1*DIGIT<

VALUE_RANGE = 1*DIGIT OWS "-" OWS 1*DI6IT

Each tefnplate element is formed as.a URL as defined in RFC 3986, containing up to one macro for
parameterization. If the URL is in relative form, it is considered relative to the segment being requested.

—

The {} parameter is used to specify a specified list or range of URLs that differ by segment number g
timestaimp and is expanded-using the provided value specifier. If no parameter is provided, the value
specifiel is optional. Thissmakes it possible to provide a simple list of URLSs.

The URL list will bé/génerated from each template item by evaluating the provided parameter. Fqr
numberfranges, thisimeans generating a URL for each segment number in the range provided (inclusive).

The conpplete;URL list is formed by expanding each URL template in turn, creating an ordered list gf
URLs. S¢e-Ahnex F for examples of the push template under various scenarios.

6.1.7 FastStartParams

Afaststart parameter set (FastStartParams)is sent from the client to the server to signal the client’s
preferences for initialization information and media, which may be used by a server to determine the
most appropriate set of segments to push to the client in response to an MPD request.

The parameter set is expressed as a set attributes, made up of keys or key/value pairs. Each attribute
shall be treated as AND conditions.

The FastStartParams string format ABNF is as follows:

FAST_START_PARAMS = ATTRIBUTE_LIST / ATTRIBUTE_ITEM

6 © ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

ATTRIBUTE_LIST = ATTRIBUTE_ITEM OWS “;” OWS ATTRIBUTE_LIST / ATTRIBUTE_ITEM
ATTRIBUTE_ITEM = 1*PPCHAR
With OWS (optional whitespace) as defined in IETF RFC 7230 3.2.3

Table 2 describes valid values for PushStartParams attributes:

Table 2 — Valid attributes for FastStartParams

Attribute lype ADbNF Description

nitialization ATTRIBUTE_ITEM = "init-only"” Only initialization segments should be pushed.

egments only If not present, both Initialization Fegment

and some Media Segments may be|pushed.

Media Type ATTRIBUTE_ITEM = Only Initialization.dnd/or Media Segments
"type=" MEDIATYPE related to MEDIATYPE should be gushed.

MEDIATYPE = "video” / "audio~""

btart bitrate ATTRIBUTE_ITEM = "bitrate=" RATE |Only Initialization and/or Media Segments
RATE = SQUOTE INTEGER SQUOTE fr_om the Reprgsentatlon whose bitrate (in
bitper’second) is the nearest but noft greater
than the specified value should be|pushed.

Note Selection of the Repres¢ntation
from which segments are pushed may be
determined by @bandwidth aftribute
for Representations.

Resolution ATTRIBUTE_ITEM = "height&f When provided with “video“ meflia type
RESOLUTION attribute, only Initialization and/¢r Media
RESOLUTION = SQUOTE ZNTEGER SQUOTE |S€8ments from the Representation whose
number of horizontal lines is the negrestand
preferably not greater than specifipd value.

Language ATTRIBUTE_ITEM = "lang=" SQUOTE |Declares the language code for segments
STRING SQUOTE to be pushed. The syntax and s¢gmantics
according to IETF RFC 5646 shall pe used.

Declares a maximum amount of Mg¢dia data
to be pushed.

Media amount ATTRIBUJE .ITEM

"D=" (SQUOTE INTEGER SQUOTE /
This limit can be expressed as a maximum

"B="-"SQUOTE INTEGER SQUOTE . . 1.
Q Q duration "D" in milliseconds or ajnumber

of bytes "B".
Media starting peint/| ATTRIBUTE_ITEM = "t=" START_ POINT |Declares the desired media starting point
START POINT = "begin” / "now" of Initialization Segments and/dqr Media
- Segments to be pushed.
JRL List ATTRIBUTE_ITEM = "urls=[" URL_ Describes the list of segment URLs fhat may
LIsT "]" be returned by the server, where URL_LIST
is as defined in 6.1.5.
Shatt Uu}y be—iretuded—in Push
Acknowledgment.

Each attribute is optional. If the attribute list is empty, it shall be interpreted as including “init-only”.
See Annex G for examples of fast start under various scenarios.

6.2 Push strategy definitions
Table 3 provides the description of each PUSH_TYPE_NAME defined in this document.

© ISO/IEC 2017 - All rights reserved 7

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

Table 3 — Valid values for PUSH_TYPE_NAME

PushType

Description

urn:mpeg:dash:serverpush:2017:p
ush-fast-start

Indication that, along with an MPD, initialization data and optionally
a given number of initial media segments are considered for push.

A server receiving such push strategy may push some or all available
Initialization Segments and optionally some media segments related
to the requested MPD within the constraints defined by provided
attributesa.

to push some or all available Initialization Segments and optionhall
some Media Segments within the constraints defined by pxevide
attributesa.

A clientreceiving such push strategy is informed thata server intend%

If attributes are not specified, the server may push whatit consider$
the most appropriatea by default.

urn:mgy
push-1

i st

eg:dash:serverpush:2017:

Indication that some segments as described by the URL list ar¢
considered for push.

A server receiving such push strategy mayvise it to identify som¢
segments to push.

A clientreceiving such push strategy can be informed on the segment$
the server intends to push.

urn:mgy
push-n|

Xt

eg:dash:serverpush:2017:

Indication that the next K segthents in the order of time, using th¢
requested segment as thednitial index, are considered for push.

A server receiving such'push strategy may push the next segments
consecutively to the requested one.

A client receiving'such push directive is informed that the servef
intends to push the next segments consecutively to th¢
requested one!

urn:mgy
push-n

one

eg:dash:serverpush:2017:

Indicatien that no push should occur.
A server receiving such push strategy should prevent from pushing

A ¢lientreceiving such push directive is informed that the server doe$
not intend to push.

urn:mpeg:dash:serverpush:201l%3p|Indication that some segments as described by the URL template ar¢
ush-tepplate considered for push.
A server receiving such push strategy may use it to identify som¢
segments to push.
A clientreceiving such push directive can be informed on the segment$
the server intends to push.
urn:mgeqg:dashsgerverpush:2017: |Indication that the next segments in the order of time, continuing unti
push-tlime the segment time (presentation time of the first frame) of a segmen

exceeds time, T, are considered for push.

A server receiving such push strategy may push a given duration o

medla segments.

A client receiving such push directive is informed that the server
intends to push a given duration of media segments.

a To identify more focused resources to push at the beginning to achieve a fast start, the DASH server may use,
in addition to specified attributes, client hints, client preferences, client logs, MPD knowledge or its own propri-
etary knowledge of how the segments are generated.

A server shall recognize at least the “urn:mpeg:dash:serverpush:2017:push-none" strategy.

Each push strategy may only be valid when applied to a segment request, an MPD request or both.
Table 4 describes the type of request for which each strategy may be applied and describes the

parameters that may be used.

© ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

Table 4 — Valid request types and parameters for each PushType

PushType Request type PUSH_PARAM
urn:mpeg:dash:serverpush:2017:push-fast-start | MPD FastStartParams
urn:mpeg:dash:serverpush:2017:push-1list Segment URLList
urn:mpeg:dash:serverpush:2017:push-next Segment INTEGER
urn:mpeg:dash:serverpush:2017:push-none MPD or Segment N/A
urn:mpeg:dash:serverpush:2017:push-template |Segment URLTemplate
[T :Mpeg:Jdash: serverpusni: Z01L /:pushi—cime Segment INTEGER

7 DASH server push over HTTP/2

7.1 PushDirective binding

]

h HTTP/2, push directives are signalled using an HTTP header called “Accept-Push-Policy”. The
df this header is a PushDirective as specified in 6.1.3.

OTE As required by HTTP, multiple push directives can be signalled.either using multiple HTTP h
y combining multiple push directives as a comma-separated list into a single header. Annex H illustratg
f push directives with the switching element from ISO/IEC 23009-1.

o o =

7.2 PushAck binding

o —

ontent of this header is a PushAck as specified in 6:1.4.

dditionally, the server may advertise the PushType(s) it supports by using an HTTP headg
Supported-Push-Policies”. The content of thisheader is a comma-separated list of PUSH_TYPE_]
as specified in 6.1.2.

Ellary

=z

OTE Supported-Push-Policies can/be-used by the server when it is unable to support any of the 1
ushTypes.

v

1.3 Push cancel

]

h HTTP/2, a client may explicitly request to cancel ongoing push requests using an HTTP head
“Push-Cancel”. The content of this header is a URLList as defined in 6.1.5.

oy

client sending @ “Push-Cancel” with a URLList parameter informs the server that on-g(
romised pushes for resources with one of the specified URLs can be cancelled for the
onnection.If-ho outstanding push requests are in effect, then this header will have no effect.

Q'

The server may send a RST_STREAM frame (see IETF RFC 7540, 6.4) with a cancel code on
dorrésponding to the on-going and promised pushes for resources with one of the specified UR

content

baders or
s the use

h HTTP/2, push acknowledgements are signalled using an HTTP header called “Push-Policy”. The

br called
NAME(s)

equested

br called

ing and
current

streams
Ls.

NOTE Sderver penaviour 1S best errort and optional.

8 DASH server push over WebSocket

8.1 Message flow over WebSocket

Figure 2 shows the message flow for carrying an MPEG-DASH media presentation over a full duplex
WebSocket session. Messages are defined to allow for MPD and segment objects to be delivered over a
WebSocket sub-protocol (see Table 5). These messages may carry push directives that signal additional
segment objects to be delivered over the WebSocket channel. Note that this flow is identical to the

general message flow described in Clause 4, using WebSocket-specific message bindings.

© ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

Client Server
4 N 4 N
et_mpd [URL, .
Request MPD l%ushDirective] Receive MPD
L) > Request)
a N 4 N
Receive New MPD Send MPD
new_mpd [Segment,
- / PushAck] \ s
#
))
Receive Initialization Send Initialization l
Data Data .
\ S \ V. 4
, \ get_segment [URL, , N
PushDirective] Receive Segmen(t
| Request Segment - S &
L) L Request
new_segment [Segment,
4 N < PushAck] 4 N\
Receive New new_segment [Segment]
Segments = = Sénd Segments
new_segment [Segment]
\. J ! < \. J
{
(N
4 Begin Playback '
. 7
Figure 2 — Message\flow over WebSocket
8.2 bSocket sub-protocol for MPEG-DASH
8.2.1 PEG-DASH WebSocket frame format and semantics
The DASH sub-protocol shall use’the "binary" format (opcode "binary" or any “‘continuation” frames
thereof) for all messages exchanged over the WebSocket connection, as described in RFC 6455.
The MPEG-DASH sub-protocol frame consists of a frame header and frame payload. The frame headqr
(see Figire 3) shall be formed as WebSocket frame Extension Data, which shall be present and of which
the size fan be determined as 4+4*EXT_LENGTH bytes as given by the DASH sub-protocol frame header.
The frarhe payload’corresponds to the WebSocket Application data, as described in RFC 6455.

10 © ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

0 1 2 3

12345678901 23456789012345678901
Fet=t-t bttt -d bbbttt -t bbbttt -F -ttt -t-F-F-F-+-+
| STREAM ID | MSG_CODE |E] F | EXT_LENGTH |
+-t-t-t-F-t-t-t-F-t-t-F-F-t-F-t-F-t-F-F-F-+-F-F-F-+-F-F-F-F+-+-+-+
! Extension (JSON encoded parameters) |

Hot=t=t-t-dot-t-t-dodt-t-t-t-db bttt -t -ttt -ttt -t-t-t-F-+

Figure 3 — DASH sub-protocol frame header for WebSocket

The DASH sub-protocol frame header is defined as follows:
STREAM_ID: 8 bits

[s an identifier of the current stream, which allows multiplexing of multiple requests/r¢g
over the same WebSocket connection. The responses to aparticular request shall use t
STREAM_ID as that request. The appearance of a new STREAM_ID indicates that a new sty
been initiated. The reception of a cancel request, an end.of stream or an error shall result i
the stream identified by the carried STREAM_ID.

NISG_CODE: 8 bits

Indicates the MPEG-DASH message represented by this frame. Available message cd
defined in 8.3.

H: 1 bit

This field is the error flag. When(this field is set, the receiver may interpret the message as
Additional information abouf the error may be available in the extension header.

H: 2 bits
Reserved.
HXT _LENGTH: 13 bits

Provides the)length in 4 bytes of the extension data that precedes the application data, i
padding.

Hxtensien:"4*EXT LENGTH

The extension header shall be a JSON encoding of additional information fields that app

sponses
he same
eam has
1 closing

des are

AN error.

hcluding

y to the

reauest/roesnaonse conforminag to REC 7158 Ta alion with 4 hute houndaries naddina
e eSSt/ eSS PO o O R EtoO—TR 33630 g vwwItH— 3+ 5 e

0 bytes

DoTtrtra T TP TS

may be added after the extension header. The content shall be encoded in UTF-8 format. The J[SON
encoding of the extension header shall consist of a single root-level JSON object, containing zero or

more name/value pairs.

8.2.2 Definition of WebSocket streams

The DASH sub-protocol for WebSocket defines the concept of streams that allows for an independent,
bi-directional, sequence of frames to be exchanged between the client and server. Multiple streams may
be created on top of the same WebSocket connection. The server shall send responses to the client’s
requests on the same stream that was used to submit the request. For instance, a push response that
contains a set of segments shall use the same stream for the delivery of all resources of the response.

© ISO/IEC 2017 - All rights reserved

11

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

This is different from the behaviour in HTTP/2, where each resource will be assigned to a separate
stream. The streams are identified by their STREAM_ID as defined in 8.2.1.

Each stream shall only carry at most one push directive and its responses. New push directives shall be

started

in a new stream.

8.3 WebSocket message codes

Table 5 — List of available DASH sub-protocol message codes

Message code Message Definition
1 get_mpd 8.4.1
2 get_segment 8.4.2
3 new_mpd 8.4.3
4 new_segment 844
5 end_of_stream 8.4.5
255 segment_cancel 846
8.4 bSocket message definitions
8.4.1 PD request (client — server)

The MPD request message initiates the request for a DASH MRD file. One or more push directives maly

be provided with the MPD request.

An opti

processing the message.

Mes

sage name: get_mpd

nal headers field may be included to providesadditional information to the server to aid i

— Supplied arguments
Parameter name Type Cardinality Description

mpd urf URI 1 The full URI for the MPD being requested.

push dlirective PushDirective 0.N A push strategy to be applied to this MPD request,
as described in 6.1.3.

headerfs String 0..1 Contains a CRLF separated set of HTTP 1.1 conformanf
header fields that apply to this message.

The supplied arguments shown above shall be JSON encoded conforming to normative JSON schemfa

shown.

12 © ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

"$schema":"http://json-schema.org/draft-04/schema#",

"title": "Get MPD",

non

"description": "Normative schema for get_mpd message .",

non

"type": "object”,

"nronerties": {
I I C

ISO/IEC 23009-6:2017(E)

"mpd_uri": {

non

"type": "string”,

non s

"format": "uri

b
"push_directive": {

non

"type": "array",
"items": {"type": "string"},
"minltems": 0

b
"headers": {

non

"type": "string"

}
2

"required": ["mpd_uri"]

— 3

rocessing the message.

—C-Message name: get_segment

§.4.2 Segmentrequest (client - server)

he segment request message initiates the request for a DASH segment. The segment reqyest may
hclude one ormaere push directives to inform the server to actively push one or more future sggments.

An optional headers field may be included to provide additional information to the server t¢ aide in
)t

— Supplied arguments

Parameter name Type

Cardinality

Description

segment uri URI

1

The full URI for the video segment
being requested.

push directive PushDirective

0.N

The desired push strategy for
getting following segments, as
described in 6.1.3.

headers String

0.1

Contains a CRLF separated set
of HTTP 1.1 conformant header
fields that apply to this message.

© ISO/IEC 2017 - All rights reserved

13

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

The supplied arguments shown above shall be JSON encoded conforming to normative J[SON schema
shown below.

{

"$schema":"http://json-schema.org/draft-04/schema#",

"title": "Segment Request",

"description": "Normative schema for get_segment message .",

non

"type': "object”,

"properties": {

2
"requifed": ["segment_uri"]
}
8.4.3 MPD received(server — client)
This me
The pre
by the s¢

push ackmowtedgmentsirattonty beapptied to the firstresponse of a pusitsequernce and ot to fottowin

"format™: "uri

segment_uri": {

non

type": "string",

pugh_directive": {

"t Vpe": "array",

non

tems": {"type": "string"},

—r

minltems": 0

"hegders": {

non

type": "string"

5sage represents the server’s response from a previous get_mpd message sent by the client.

bence'\0f at most one push acknowledgment informs the client on the push strategy to be take
rver'in response to a push directive, including possibly that no push strategy will be in effect.

=}

A

pushed responses.

An optional headers field may be included to provide additional information to the client to aide in
processing the message. A status code is included to signal additional detail about the contents of the
message.

14

Message name: new_mpd

Supplied arguments

© ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

Parameter name Type Cardinality Description
mpd String 1 The MPD returned by the server.
push_ack PushAck 0.1 The push strategy that the server
will follow, as described in 6.1.4.
headers String 0.1 Contains a CRLF separated set of
HTTP 1.1 conformant header fields
that apply to this message.
status integer 1 An HTTP status code, conforming
toREC 77221 . Clause A‘ whic applles
to this message.
The supplied arguments shown above shall be JSON encoded conforming to normative JSON| schema
shown below.
{
"$schema":"http://json-schema.org/draft-04/schema#",
"title": "MPD Received”,
"description": "Normative schema for new_mpd message .",
"type": "object”,
"properties": {
"mpdll: {
"type": "string"
b
"push_ack": {
"type": "string"
b
"headers": {
"type": "string"
b
"status': §
"type”: "integer”
T
b
"required": ["mpd","status"]
}
For the parameter "mpd", JSON data type of “string” is used.
15

© ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

8.4.4

This me

Segment received (server — client)

ssage represents the server’s response from a previous get_segment message sent by the client.

A server may issue multiple responses for a single request, as appropriate for the push strategy in the
corresponding get_segment message.

The presence of at most one push acknowledgment informs the client on the push strategy to be taken
by the server in response to a push directive, including possibly that no push strategy will be in effect. A
push acknowledgment shall only be applied to the first response of a push sequence and not to following
pushed responses.

An opti(I)nal headers field may be included to provide additional information to the client to aide‘ip
processing the message. A status code is included to signal additional detail about the contents of thie
messagg.

— Megsage name: new_segment

— Supplied arguments
Parameter name Type Cardinality Desc¢ription
Segmenft URL string 1 The segment URL¢
push_ack PushAck 0.1 The push strategy that the server will follow, a$
described in 6.1.4.
headerfs String 0..1 Contains a*CRLF separated set of HTTP 1.]
conforfmarnt header fields that apply to this messagd.
status integer 1 An HTTP status code, conforming to RFC 723
Clause 6, which applies to this message.
The supplied arguments shown above shall be JSON encoded conforming to normative J[SON schemp
shown Helow.
{
"$schgma":"http://json-schema.org/draft=04/schema#",
"title"| "Segment Received",
"descrfiption”: "Normative scherha for new_segment message .",
"type'l: "object”,
"propgrties": {
"segment_URL: ¥
"t Vpe": "String"
b
"push_ack™: {
"type": "String"
b
"headers": {
"type": "String"
b
"status": {
16 © ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

nn non

type": "integer"

2

"required”: ["'segment_URL","status"]

mn mon
nush ack he
L

aders",

4

Afterthe JSON encoded parameters which shall nn]y include "qagmoni— LRI
"btatus", the segment data shall be sent as binary data without JSON encoding. No other JSON
fgarameters shall follow the segment data.

0

4.5 End of stream (EOS) (server — client)

his message is sent by the server to indicate that a previous operation cannotbeicontinued a§

o O

nknown duration comes to an end and the server is not able to push segrments of that Repres
anymore. The EOS message shall result in the closing of the stream.

oy

n optional headers field may be included to provide additional, information to the client td
fdrocessing the message. If no "headers" parameter is included.in the end_of_stream messg
the EXT_LENGTH shall be set to 0 and no empty JSON parameter encoding shall be prese
HXT_LENGTH field.

- Message name: end_of_stream

- Supplied arguments

encoded

aresult

f a change to resource availability or other condition. An example of such situation is when a FPeriod of

entation

aide in
ge, then
nt after

Parameter name Type Cardinality Description

header fields that apply to the request corres
to this stream.

jeaders String 0.1 Contains a CRLF separated set of HTTP 1.1 copformant

ponding

—

he supplied arguments shown above shall be JSON encoded conforming to normative JSON
shown below.

"$schema":"http://jsoh-schema.org/draft-04/schema#",

"title": "End of-Stream",

"o

"descriptien': "Normative schema for end_of_stream message .",

"o

"typet:-tobject”,

schema

‘properties": {

"headers": {

non

"type": "string"

}
2

"required": []

© ISO/IEC 2017 - All rights reserved

17

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

8.4.6 Segment cancel (client — server)

This message represents a client request for the server to cancel the outstanding push transaction
over a given WebSocket stream. If no outstanding push transaction is in effect, this message will have
no effect. In the case where the cancel is to take effect immediately (signalled by the “immediate”
parameter in the description of this message), the server should cancel the on-going pushed segment
and all pushed segments that have been scheduled by the server. In the case where the cancel is not
immediate, the server should continue to send the next pushed segment, and cancel all other scheduled

segments.

An opti¢nal headers field may be included to provide additional information to the server to aide ih

processing the message.

— Message name: segment_cancel

— Supplied arguments

Paramjeter name

Type

Cardinality

Description

immedipte

Boolean

1

If true, the client indicates that it would like the serv}
er to stop transmission-intmediately. If false, thg
client indicates it would\like the server to complet¢
transmission of thescurrently pushed segment
(if any) before cancelling the transaction.

14

headeris

String

0..1

Contains a CRLESeparated set of HTTP 1.1 conformang
header fields)that apply to the request corresponding
to this stream.

The supplied arguments shown above shall be JSON encaoded conforming to normative JSON schem|

shown Helow.

{

"$schgma":"http://json-schema.org/draft-04/schema#",

"title"] "Segment Cancel”,

non

"descifiption": "Normative schema for segment_cancel message .",

"type': "object”,
"properties": {

"immediate": {

}:

"heafders": {

"type": "booleah”

<)

non

"type": "string"

}
2

"required": ["immediate"]

18

© ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

8.5 MPEG-DASH sub-protocol registration

RFC 6455 requires that sub-protocols be registered with the IANA. The registry requires the following
information:

Subprotocol-Identifier: “2016.serverpush.dash.mpeg.org”
Subprotocol Common Name: “MPEG-DASH-ServerPush-23009-6-2017"

Subprotocol Definition: Refers to this document.

© ISO/IEC 2017 - All rights reserved 19

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

Annex A
(informative)

Considered use cases

Al U

In this yl
presentd

To fulfil
reducing
live poin

In addit
it is imp
perform|

A2 U

In this ul
to start
A3 U

A viewe
web brg
media a

A4 U

A viewg
protoco
using H'l

A5 U

A viewe

5e case 1: Low latency live streaming

e case, a viewer begins playback of a live DASH presentation, with the intention of viewiing thie
ition as close to live as possible.

this usage, the DASH media has been prepared to make it possible to achieve lowlive latency bfy
y the segment size. While reducing segment size makes it possible to access contént closer to thie
t, it is important to ensure the number of server transactions does not incrgase at the same time.

on, small segments are generally not efficient over TCP/IP because ofslow start behaviour and
ortant to provide methods to efficiently use the network link whitetachieving low latency liv
ance.

D

e case 2: Fast start time

o=}

se case, a viewer begins playback of a VOD DASH presentation and would like the presentatio
hs quickly as possible.
s5e case 3: Web browser playback

' begins playback as described in use c¢ase 1 or 2, using a standards-based web browser. This
wser supports WebSocket and mayalso support HTTP/2, although there is no way for thie
bplication to know whether HTTR/2'1s supported by the browser directly.

5e case 4: HTTP-compatible full duplex protocol not supported by client

o

r begins playback of-a DASH presentation. The DASH client does not support a push-base
, although in this case¢; the server does. The playback session is initiated and operates smoothl
[TP/1.1 as a transport.

<<

se case/5;'HTTP-compatible full duplex protocol not supported by server

 begins playback of a DASH presentation. The server does not support a push-based protoco,

althoug

in, this case, the DASH client does. The playback session is initiated and operates smoothlly
TP /1

using HHH 7 +tasa tranapurt.

20

© ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

Annex B
(informative)

System architecture for HTTP/2

dre three major system components: 1) the origin server to host the video assets for st
5 an HTTP/2 enabled web server deployed with one or more video push strategies; 2) the\DA$H client
b receive and play back the video stream, which consists of a HTTP/2 enabled web browser andl a video
layer; and (3) a content distribution network (CDN) in between the client and origin,which copnsists of
TTP/2 enabled web cache servers, deployed with one or more push strategies.

T o

Push
Strategy

Push
Strategy

—
\
Video Playler
(DASH Enabjed)
J
~
Origin Server CDN Web Browker
(HTTP/2 (HTTP/2 Enabled) (HTTP/3
Enabled) HTTP/2 HTTP/2 Enabled)

Video Assets

Figure B.1 — System architecture of HTTP/2 DASH streaming

h this systentd; there are two HTTP/2 persistent connections, one between the client and the (DN and
ne betwéen the CDN and the origin server. In addition, a tunnelled HTTP/2 connection may also be
stablishied between the client and origin, for live streaming that requires low latencies. Unlike HTTP
.0/4 Xl streaming, in HTTP/2, the server (origin or cache) can actively push segments to the glient (or
he’CDN) as soon as they are generated, in addition to the resources that have been explicitly rgquested
by the client (or the CDN) (see Figure B.2).

o DO =

© ISO/IEC 2017 - All rights reserved 21

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

Client Server Client Server

req seg 1 reqsegltok

\ Seg]. %

segl

seg 2
reqseg(n-k+1)ton

req seg n Seg(n'k‘fl)jﬁ>
\ 4_,

y /
segn

a) Regular HTTP b) HTTP/2 server push

Figure B.2 — Pushing segments using HTTP/2 server push

22 © ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

Annex C
(informative)

Examples of HTTP/2 client/server behaviour

— —

{

.1 Example of segment push using “push-next”

h this example, a client requests that the server pushes the next two segments after the one
equested.

equest [Stream ID = 1]:

[EADERS
+ END STREAM
+ END HEADERS
:method = GET
:scheme = http
:path = /example/renditionl/segmentl
accept-push-policy = "urn:mpeg:dash:serverpush:20r% push-next";2;g9=1.0

esponse [Stream ID = 1]:

(USH PROMISE

Stream ID = 2

+ END HEADERS

:method = GET

:scheme = http

:path = /example/renditionl/segme&nit?2
USH PROMISE

Stream ID = 4

+ END HEADERS

:method = GET

:scheme = http

:path = /example/rendit¥onl/segment3
[EADERS

+ END STREAM

+ END HEADERS

:status = 200

push-policy.=_Murn:mpeg:dash:serverpush:2017:push-next";?2
IATA

+ END STFREAM
binary data~for segment 1}

esponse/{Stream ID = 2]:

[EADERS
+ END STREAM
+ END HEADERS

:status = 200

DATA

{

+ END STREAM
binary data for segment 2}

Response [Stream ID = 4]:

HEADERS

+ END STREAM
+ END_HEADERS
:status = 200

DATA

{

+ END STREAM
binary data for segment 3}

© ISO/IEC 2017 - All rights reserved

initially

23

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

C.2 Example of segment push using “push-template”

In this e

xample, a client requests that the server pushes a set of segments based on a provided push

template.

Request

HEADERS

[Stream ID = 1]:

+ END STREAM
+ END HEADERS
cmethod = GET

renditi

Respons

PUSH_PR

PUSH_ PR

HEADERS

!
renditi
DATA

{binary

Respons

HEADERS

DATA
{binary
Respons

HEADERS

scheme = http

path = /example/renditionl/segmentl

ccept-push-policy = "urn:mpeg:dash:serverpush:2017:push-template";"'../
bnl/segment{}':{2,3};9=1.0

e [Stream ID = 1]:

DMISE
tream ID = 2

END HEADERS
method = GET

scheme = http
path = /example/renditionl/segment?2
DMISE

tream ID = 4

END HEADERS
method = GET

scheme = http
path = /example/renditionl/segment3

END STREAM

END HEADERS

status = 200

ush-policy = "urn:mpeg:dash:serverpush@2017:push-template";"'../
bnl/segment{}"':{2,3}

+ END_ STREAM
data for segment 1}

e [Stream ID = 2]:

END_ STREAM
END HEADERS
status = 200

+ END_ STREAM
data for seggment 2}

e [StreamID = 4]:

ENB, 'STREAM
END HEADERS

:status = 200

DATA

{binary

24

+ END_ STREAM
data for segment 3}

© ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2

017(E)

C.3 Example of initiating a push request with a server that does not support push

In this example, a client requests that the server pushes the next two segments after the one initially
requested. The server is an older server that does not understand push directives. The server does not
return a push acknowledgement or promise any additional segments.

Request [Stream ID = 1]:

H

EADERS
+ END STREAM

{

wn_ o, -

{

(

e DN I A DD O
L= P p e =y e = mp vy

:method = GET

:scheme = http

:path = /example/renditionl/segmentl

accept-push-policy = "urn:mpeg:dash:serverpush:2017:push-next";2;g=1¢0

esponse [Stream ID = 1]:

[EADERS

+ END STREAM

+ END_ HEADERS
:status = 200

IATA

+ END_ STREAM

binary data for segment 1}

h this alternative example, the server does understand the<push directive, but is not config

eliver pushed segments or has otherwise elected not to honour the push request. The server ¢
ignals this with a push acknowledgment of “urn:mpeg:dash:serverpush:2017:push-none”.
equest [Stream ID = 1]:
EADERS

+ END_ STREAM

+ END_HEADERS

:method = GET

:scheme = http

:path = /example/renditionlysegmentl

accept-push-policy = "urnrmpeg:dash:serverpush:2017:push-next";2;9=1.0
esponse [Stream ID = 1]:
EADERS

+ END STREAM

+ END HEADERS

:status =200

push-poliCy = "urn:mpeg:dash:serverpush:2017:push-none"
ATA

+ ENB, STREAM
binary dat@ for segment 1}

4 . Example of cancelling a push request

rured to
xplicitly

|

....................

initially

requested. The client receives the initial segment, as well as the next one. The client cancels the stream
associated with the third segment, ending the push transaction. This example is representative of what
may occur if the client decides to switch representations, i.e. an adaptive bitrate switch, after issuing a
push request or if an MPD update makes the previously requested segments unnecessary.

Request [Stream ID = 1]:

H

EADERS
+ END_STREAM
+ END HEADERS
:method = GET
:scheme = http
:path = /example/renditionl/segmentl

© ISO/IEC 2017 - All rights reserved

25

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

accept-push-policy

Response [Stream ID = 1]:

PUSH PROMISE

Stream ID 2

+ END HEADERS

:method GET

:scheme http

:path /example/renditionl/segment?2
PUSH PROMISE

treom—TDb — 4

"urn:mpeg:dash:serverpush:2017:push-next";2;g=1.0

1 END HEADERS

method GET

scheme http

path /example/renditionl/segment3

HEADERS
1 END STREAM
1 END HEADERS
status 200
push-policy = "urn:mpeg:dash:serverpush:2017:push-next";2

DATA
+ END STREAM
{binary| data for segment 1}

Respongde [Stream ID = 2]:
HEADERS
1 END_STREAM

1 END_HEADERS
status 200

DATA
+ END_ STREAM

{binary| data for segment 2}
Request{[Stream ID = 4]:
RST STREAM

Brror Code = CANCEL

26

© ISO/IEC 2017 - All rights reserved

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

ISO/IEC 23009-6:2017(E)

Annex D
(informative)

Examples of WebSocket client/server behaviour

|

el 3 B 09 (@s)] I)] (an)

=

=

o =

@)

e 3 I 3 B 07

9
M
H
{

D.1 Example of a client requesting an MPD

h this example, a client requests that the server sends the specified MPD.

lient Request:

TREAM ID : 1

SG _CODE: 1

XT LENGTH: 27

XT: {"mpd uri":"./example.mpd"}

erver Response:
TREAM ID : 1
SG_CODE: 3

[XT LENGTH: 0
binary data with example.mpd}

D.2 Example of a client requesting a segment, using a push directive

h this example, the client requests a segment, indicating that the server should push the 1

egments after the one initially requested.

lient Request:

SG CODE: 2

XT LENGTH: 104

XT: {"segment uri":"./repl/segmentl.mp4","push directive":["urn:mpeg:dash:serverpy

(loush-next;2;g=1.0"]}

erver Response:

TREAM ID : 1

SG_CODE: 4

XT LENGTH: 56

XT: {"push agk):["urn:mpeg:dash:serverpush:2017:push-next;2"]}
binary datawith segmentl.mp4}

TREAM _TD\. 1

SG_CQDE.: 4

xT AENGTH: 0

blrmary data with segment2.mp4}

S

TREAM ID : 1

MSG_CODE: 4

E
{

XT LENGTH: 0
binary data with segment3.mpé}

© ISO/IEC 2017 - All rights reserved

ext two

sh:2017

27

https://standardsiso.com/api/?name=ca3861a6e9478df4427a00e2313f2a81

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions, abbreviated terms and conventions
	3.1 Terms and definitions
	3.2 Conventions
	4 Background
	5 Specification structure
	6 Definitions
	6.1 Data type definitions
	6.1.1 General
	6.1.2 PushType
	6.1.3 PushDirective
	6.1.4 PushAck
	6.1.5 URLList
	6.1.6 URLTemplate
	6.1.7 FastStartParams
	6.2 Push strategy definitions
	7 DASH server push over HTTP/2
	7.1 PushDirective binding
	7.2 PushAck binding
	7.3 Push cancel
	8 DASH server push over WebSocket
	8.1 Message flow over WebSocket
	8.2 WebSocket sub-protocol for MPEG-DASH
	8.2.1 MPEG-DASH WebSocket frame format and semantics
	8.2.2 Definition of WebSocket streams
	8.3 WebSocket message codes
	8.4 WebSocket message definitions
	8.4.1 MPD request (client → server)
	8.4.2 Segment request (client → server)
	8.4.3 MPD received (server → client)
	8.4.4 Segment received (server → client)
	8.4.5 End of stream (EOS) (server → client)
	8.4.6 Segment cancel (client → server)
	8.5 MPEG-DASH sub-protocol registration
	Annex A (informative) Considered use cases
	Annex B (informative) System architecture for HTTP/2
	Annex C (informative) Examples of HTTP/2 client/server behaviour
	Annex D (informative) Examples of WebSocket client/server behaviour
	Annex E (informative) Protocol upgrade and fallback procedure for WebSocket
	Annex F (informative) Examples of URL list and URL template
	Annex G (informative) Examples of fast start
	Annex H (informative) Use of DASH server push with the switching element
	Bibliography

