INTERNATIONAL ISO/IEC
STANDARD 13673

First edition
2000-05-01

Information technology — Document
processing and related communication —
Conformance testing forcStandard
Generalized Markup Language (SGML)
systems

Technologies de l'information — Traitement documentaire et communication
connexe — Tests de-conformité pour langage normalisé de balisdge
généralisé (SGML)

Reference number
ISO/IEC 13673:2000(E)

SRR
e ° © ISO/IEC 2000

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© |ISO/IEC 2000

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20
Tel. +412274901 11

Fax +4122 7341079

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 2000 — All rights reserved

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

Contents

Page
1 Yo o] o1 TP P PP T PPPPRPTPPRTPTN 1
2 NOIMALIVE FEFEIENCESoiiiiiiiie et 1
3 Precedence of ISO 8879cooiiiiiiiiiii e 2
4 DEfiNItIONS ...t 2
5 USE Of SCGML tESE SUITES ...cceiiiiiiieiiiiee e 3
6 Test suite documentation
7 TYPES OF TESS ..ottt e e e nnneees 0 T
8 General requirements for individual testscccccccveeeevivccic L LT
9 Test case NAMINg CONVENTIONScccoiiiiiriieiiiiieeeeiiieeee e gre e eneeeesans I
10 Requirements for SGML names and literals............ccccoeeeee Bt 9
11 Conventions for testing string [ength ... it 9
12 Source document formatting CONVENLIONSccco. bl e 1(
13 TeSt CAtEYONIES .uviiiieiiiiiiiei ittt T ettt s e e 11
14 The Reference Application for SGML TeSting (RAST)coocvvvveeiiiienerennn. 12
15 The Reference Application for Capacity,Testing (RACT)ccceevvivveeeennnen 19
16 TEStSUILE FEPOITS ..ceieiiiiiiees ittt A ettt e e sttt e e s st e e e e abb e e s anbe e e e e aneee 2(
17 Testing SDIF data StreamS 0% «uveeeeriieeeee ittt 21
Figure
1 A 240-character processiig iNSrUCIONccevveiiiiieeiniiiiee e 14
Annexes
A The ISO 8879:Element Structure Information Set (ESIS).........cccccevvvvneen. 23
B Sample tests-and RAST reSUIS......ccooiuiiiiiiiiiiiiee e 26

© ISO/IEC 2000 — All rights reserved iii

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC partici-
pate in the development of International Standards through technical committees established by the respective
organizatiprmto deat with particutar fretds of techmicat activity 1SOand tEC techmnical committees cottaorate jn fields

of mutual finterest. Other international organizations, governmental and non-governmental, in liaison with.l
IEC, also fake part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives,Rart 3.

50 and

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEQ JTC 1.
Draft Intefnational Standards adopted by the joint technical committee are circulated to¢national bodies fon voting.

Publicatioh as an International Standard requires approval by at least 75 % of the natiohal bodies casting a

ote.

Attention s drawn to the possibility that some of the elements of this International:Standard may be the subject of

patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 13673 was prepared by ANSI (as ANSI X3/190) and was adopted, under a
“fast-track| procedure”, by Joint Technical Committee ISO/IEC JTC 1 laformation technology, in parallel
approval By national bodies of ISO and IEC.

Annex A fprms a normative part of this International Standard. Annex B is for information only.

special
with its

iv © ISO/IEC 2000 — All rights reserved

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

Introduction

ISO 8879:1986 and 8879:1986/A1:1988, Information processing — Text and office
systems — Standard Generalized Markup Language (SGML), define when a sys-
tem is a conforming SGML system. The determination of whether a system is a
conforming SGML system is of value both to potential users of such systems and
to their developers. This determination is, however, a complex process. To this
end, efforts are underway to develop test suites to validate conformance. Stan-
dardization of development and use of test suites assures consistency of results
and informs the public of the implications of the tests. Such formalism is provided
by this standard, which includes

— guiaelines 10r tne content or inaiviaual tests,

— rigorous conventions for naming test cases and the constructs used-within
them;

— formatting and comment conventions;
— conventions for classifying test cases;
— conventions for documenting test suites;

— definition of a Reference Application for SGML Testing (RAST) that indicate$
how an SGML parser interprets a test;

— definition of a Reference Application for Capacity Testing (RACT) thaf
reports a parser's capacity calculations;

— conventions for reporting a system's performance on a test suite.

This standard also addresses conformance to the related standard)
ISO 9069:1988, Information Processing — SGML support facilities — SGML Docuf
ment Interchange Format (SDIF), as:SDIF is needed to connect the several entitie$
of an SGML document into a sirgle object for interchange within OSI.

This standard may be used-by those who develop SGML test suites, those wh
build SGML systems to be’evaluated by such suites, and those who examine a:l:
SGML system's performance on a test suite as part of the process of selecting a

SGML tool.

© ISO/IEC 2000 — All rights reserved \

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

INTERNATIONAL STANDARD

ISO/IEC 13673:2000(E)

Information technology — Document processing and
related communication — Conformance testing for

QqQ

et

1

T
of
SY
suU
ug
S
of

In

Scope

is standard addresses the construction and use
test suites for verifying conformance of SGML
stems. Its provisions assist those who build test
ites, those who build SGML systems to be eval-
ted by such suites, and those who examine an
5ML system's performance on a test suite as part
the process of selecting an SGML tool.

particular, this standard includes:

— criteria for the organization of test suites,
including naming conventions, documentation
conventions, and specification of applicable con-
crete syntaxes and features. Among other
advantages, these conventions -facilitate any
non-SGML automatic processing that may be
convenient for the developers or the users of the
tests;

NOTE — An example ef such non-SGML processing is
sorting tests by name)

— a standard-form for describing test results
that makes ‘clear what has been proven or dis-
proven_bythe tests;

— he specification of a Reference Application

for)SGML Testing (RAST) that interprets all

tandard Generalized Markup Language (SGML) syste

passed by a geperal-purpose SGML parse
application hut.does not test additional inf
tion that some parsers provide;

— the{sSpecification of a Reference Appli
for_Capacity Testing (RACT) that reports
dating parser's capacity calculations. An
system that supports this application indica
ability to report capacity errors regardlg
whether it supports variant capacity sets;

— the specification of test procedures relg
SDIF data streams.

This standard applies to the testing only of a
of SGML implementation and usage for
objective conformance criteria are defin
ISO 8879.
NOTE — Among the aspects of an SGML syst
addressed by this standard are error recovery,

ing of error messages, application resulty
documentation (including the system declaratig

2 Normative references

The following normative documents contain

ms

I to an
orma-

cation
A vali-
SGML
tesits
bss of

ited to

spects
which
ed in

bm not
phras-
, and
n).

provi-
text,

sions which, through reference in this

©l

markup to allow machine comparison of test
results for documents conforming to ISO 8879.
RAST indicates in a standard way when tags,
processing instructions, and data are recognized
by the parser, replacing references and process-
ing markup declarations and marked sections
appropriately. RAST tests information likely to be

SO/IEC 2000 — All rights reserved

constitute provisions of this International Standard.

For dated references, subsequent amendme

nts to,

or revisions of, any of these publications do not

apply. However, parties to agreements bas
this International Standard are encourag
investigate the possibility of applying the

ed on
ed to
most

recent editions of the normative documents indi-

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

cated below. For undated references, the latest
edition of the normative document referred to
applies. Members of ISO and IEC maintain
registers of currently valid International Standards.

ISO 646:1983, Information processing — ISO 7-bit
coded character set for information interchange

ISO 8879:1986, Information processing — Text and
office systems — Standard Generalized Markup
Language (SGML)

4.2 application modules: Components of an
SGML system other than the parser and entity
manager.

4.3 effective edition: The current edition of a
standard including any amendments, addenda, or
other modifications.

4.4 Element Structure Information Set: Infor-
mation comprising the element structure that is
described by SGML markup (the element structure
information set is defined in annex A).

ISO 8879:1986/A1:1988, Information processing —
Téxt and office systems — Standard Generalized
Markup Language (SGML) Amendment 1

ISO 9069:1988, Information processing — SGML
sypport facilities — SGML Document Interchange
Format (SDIF)

3| Precedence of ISO 8879

Any discrepancy between any provision of this
standard and 1SO 8879 should be resolved in
adcordance with the latter. Furthermore, should
any future effective edition of ISO 8879 contradict
arly provision of this standard, a test suite for the
future version will be considered to conform to this
standard only if the discrepancy is resolved. in
adcordance with the effective edition of ISO 8879.
In[particular, the precedence of ISO 8879 applies
to| the definitions in clause 4, the description of
RAST in clause 14, and the description:of ESIS in
arjnex A.

Should there be any internal inconsistencies within
th|s standard between annex A"and the remainder,
implementors of conforming test suites shall rely
or the provisions in anaex A.

4 Definitions

NOTE - None of the terms defined below are used or
defined in 1SO 8879. Should such definitions be

4.5 ESIS: Element Structure Information.Sgt.

4.6 equivalent SGML documents: ¢ SGML doc-
uments that, when parsed with respect to idg¢ntical
DTDs and LPDs, have an identical ESIS.

4.7 internal entity: An entity whose replacement
text appears in an entity declaration.

4.8 lexicographic order: An order in whigh dis-
tinct strings are arranged by comparing succgssive
letters. One string appears before another iffit is a
prefix of the’second, or if, according to the following
conventions; in the first position where they/|differ,
the chatacter in the first string precedes the char-
acternin the second string. Printable charpcters
precede nonprintable characters. One priptable
character precedes another if the ISO 646 charac-
ter number of the first is smaller than the ISP 646
character number of the second. In particulgr, the
space character precedes all other printablg char-
acters and any other printable character precedes
a second one if the first precedes the second char-
acter in the list of printable characters giyen in
4.14. A nonprintable character precedes anqther if
its character number in the document character set
is smaller than the character number of the spcond
in the document character set.

NOTE - For strings consisting only of printable¢ char-
acters, this order is independent of concrete syntax.

4.9 major SOO: A statement of objective fgr sev-
eral related tests in a test suite.

4.10 markup-sensitive SGML application: | An
SGML application that can act on SGML markup
as well as element structure.

adoed 1o Some fOtre Version of 1ISO oo/ Y, e prece-
dence of ISO 8879 will apply in accordance with
clause 3.

4.1 anomalous test case: A test case that devi-
ates from some requirement of ordinary tests
because the tested SGML construct is incompati-
ble with that requirement.

4.11 minor SOO: A statement of objective that
describes the particular principle of the SGML lan-
guage that distinguishes an individual member of a
group of related tests.

4.12 nonprintable character: A character that
is not a printable character (see 4.14).

© ISO/IEC 2000 — All rights reserved

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

4.13 ordinary test case: A test case that follows
the naming, organizing, and formatting conven-
tions itemized in this standard and identified as
requirements for ordinary tests (see anomalous
test case).

4.14 printable character: A character with
ISO 646 character number in the range 32 to 126
inclusive. These characters consist of the space
character and all the following:

" #3$ % &' ()*+ ,-./012

ISO/IEC 13673:2000(E)
5 Use of SGML test suites

Because of the wide variation possible in SGML
systems, no single test suite is adequate for testing
how well all SGML systems conform to the require-
ments of ISO 8879. Some SGML systems produce
SGML documents, others process SGML docu-
ments to obtain various results, still others both
read and produce SGML documents. Some sys-
tems are restricted to documents with particular
document type declarations, others can process

3456789 :;<

>?2@ABCD

W XY Z[\]"~_"abcdefgh
ijklmnopgrstuvwxyz

{1}~

4.15 RACT: Reference Application for Capacity
Testing.

4.16 RAST: Reference Application for SGML
Testing.

417 Reference Application for Capacity
Tgsting: An SGML application that reports capac-
calculations (defined in clause 15).

<

4.18 Reference Application for SGML
Tgsting: An SGML application that reports ESIS
information (defined in clause 14).

4.19 SOO: Statement of objective.

4.p0 statement of objective: A brief description
oflthe aspect of the SGML language explored in an
inglividual test case or a group of related tests.

4.p1 structure-controlled SGML application:

A SGML application that,operates only on ESIS
information and the “APPINFO' parameter of the
SEGML declaration; @-structure-controlled applica-
tign operates on‘the element structure described
by SGML markup, never on the markup itself.

4.p2 testcaSe (ortest): An SGML document
included’in a test suite.

4. p3-/tested system: An SGML system that is

EFGHIJKLMNOPQRSTUYV
a

arbitrary documents meeting the constramnis|of the
system declaration. A test suite intended|for a
more general system contains test cases thgt can-
not be processed by a more restrictive sysfem; a
test suite for a restrictive system does not ade-
guately explore the capabilitiés,of a more ggneral
one.

NOTE — An SGML test suite indicates whether the
modules of an SGML \system that process SGML do
so according to the-specifications of ISO 8879. Test-
ing a system's ‘SGML capabilities does not indicate
whether it correctly performs a desired application in
other respects.

5.1 Comprehensive test suites

SGML test suites shall be comprehensive. A gen-
eral*purpose SGML test suite shall providg tests
that explore conformance to every required aspect
of the SGML language and to every aspect gf sup-
ported optional features. Similarly, a test suitg for a
particular application shall provide tests to ekplore
every aspect of the SGML language used |n that
application.

NOTE — An application-specific test suite may|not be
able to test all required constructs of SGML and can-
not indicate whether the underlying SGML [parser
conforms to the requirements of 1SO 8879 fdr such
constructs. For example, attributes cannot be tg¢sted if
an application does not happen to use any. Thus, a
test suite for such an application cannot predift con-
formance of attribute handling in an implementation of
another application built with the same parser.

This standard defines requirements for testing gen-
eral SGML systems. Test suites intended fof more
restrictive environments may deviate from [these
requirements only where the requiremenis are

incompatible with the system to be tested. For
mmmplay the conventions for cnlnr‘fing g neric

evaluated by inspection of the results it produces
on the test cases of a test suite.

4.24 testsuite: A documented collection of
SGML documents intended to exercise an SGML
system in order to indicate whether the system
conforms to the specifications of ISO 8879.

© ISO/IEC 2000 — All rights reserved

identifiers cannot be followed in a system restricted
to a document type declaration that uses other
conventions.

A test suite for a validating SGML system shall
include erroneous test cases to investigate com-
prehensively the system's ability to detect errors. A

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

nonvalidating SGML system can be tested with
such a test suite, but its results on erroneous doc-
uments are not predictable.

5.2 The role of SGML in a tested system

The way a test suite is used depends on whether
the tested system processes existing SGML docu-
ments, or produces SGML documents.

5.2.1 Systems that read SGML

A system that acts upon existing SGML documents

— The application's output is machine-readable
(for example, it is a computer file rather than
printed paper or sound). Such applications
include, for example, one that counts the number
of elements in a document or one that produces
a vocabulary list of the unique words that occur
within the content of a document.

The test procedure involves comparing the appli-
cation's output on sets of equivalent, but not

identical, SGML documents. Identical output must
he Inrnrillr‘nd for such documents This crjterion

is tested by examining the results it produces from
eVlery test in a comprehensive test suite. However,
the variation in SGML systems means these
repults may take any number of forms. As a result,
there is no unique method for determining whether
a [ested system correctly processes a test case.

The remainder of this subsubclause discusses var-
iols methods for evaluating test suite results
prpduced by a system that processes SGML docu-
ments. Of these methods, RAST provides the most
information and should be used whenever
pgssible.

5.p.1.1 Evaluating with RAST

RAST (see clause 14) is a simple SGML applica-
tign designed to validate a parser's recognition of
the Element Structure Information Set (ESIS).
E$IS (see annex A) is the information exchanged
by a parser and other components of a program
that implements a structure-controlled application.
RAST reflects the ESIS of an SGML document with
a minimal amount of additional information'in such
a vay that the results it produces fram two SGML
dqcuments using the same concrete syntax will be
the same if and only if the two,documents have the
sgme ESIS. An SGML systenithat supports RAST
is|easily tested by machine Comparison of RAST
repults to known corr€ect“RAST output for every
dqcument in a test suite.

NOTE — There“is_rio requirement that an SGML sys-
tem supporttRAST. However, it should be easy to
implement. RAST with any general-purpose SGML
system«that provides a software-development envi-
ronment-for building SGML applications.

542 Comparing with equivalent

alone cannot demonstrate a system's_Comform-
ance to 1SO 8879. For example, the-critefion is
satisfied by a system that produces identical putput
for all documents, equivalent or not_More informa-
tion is obtained if the applicationgproduces different
results for documents that are.not equivalent{ Note,
however, that the simple(word-list applicatign just
described does not meet this stricter congtraint,
since there could be documents with very different
element structure-that use the same vocabulary.

NOTE - Implementors of test suites that corsist of
sets of equivalent documents should verify thaf mem-
bers ofleach set are indeed equivalent by confirming
that RAST produces the same output for every mem-
berlin the set.

5,2:1.3 Evaluation through error recognitipn

The correctness of a validating SGML parser can,
in large measure, be demonstrated if the parser
a) reports erroneous SGML documents fo be
invalid and b) reports valid documents to be con-
forming. This type of testing can be | done
regardless of how errors are reported (possipilities
include visual and auditory signals as well a$ error
messages). However, some aspects of SGML
parsing — for instance, significance of record ends
and correct interpretation of default attribute yalues
— do not affect whether the document is valld and
hence cannot be tested in this way. Compiehen-
sive testing of markup minimization in this manner
is also difficult. Furthermore, a system that reports
an erroneous document to be in error need pot be
conforming; the system may have accepted the
erroneous construct and misinterpreted sorme cor-
rect markup.

Othar faormes of avaliiation
HHe—+eoHARS-OBHeYatdatHeh

documents

An SGML system that does not support RAST can
be tested to some extent through a structure-con-
trolled application with the following properties:

— The application is not restricted to one or
more specified document type definitions;

Knowledge of particular applications can be used
to design system-specific methods of reporting all
or part of the ESIS information in a document. The
reported information is an indication of the con-
formance of the tested system's parser to
ISO 8879.

© ISO/IEC 2000 — All rights reserved

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

5.2.2 Systems that generate SGML

A system that produces SGML documents is
tested by processing representative output with a
system that reads SGML documents. A test suite
therefore consists of test cases that produce a
comprehensive collection of output documents.

NOTE - This procedure shows whether the tested
system produces conforming SGML documents from
the test cases; it provides no information about
whether the output is correct in other respects.

ISO/IEC 13673:2000(E)
6 Test suite documentation

This clause describes information that shall be
included in the documentation that accompanies a
test suite. This information shall be available to all
potential and actual users of the test suite and shall
be repeated in any report generated after a system
is tested.

6.1 General documentation

The documentation shall include the following:

P.3 Systems that both read and produce
SML

0o

system that both processes and generates
S5ML documents can be tested separately as a
stem that reads SGML and as one that produces
5ML. Depending on the relationship between the
but and output documents, a comparison of the
twlo may provide additional results. Although such
a [comparison is application dependent, it may
rejeal information about SGML conformance. One
form of comparison is testing whether input and
otput are equivalent SGML documents (which
cgn be done by a character-by-character compari-
sdn of their RAST results). This comparison is
udeful, for example, in testing a text editor that can
bqth import and export SGML documents. Such an
editor's SGML parsing can be tested by importing
edch test in a test suite and immediately exporting
the unedited document; the result should*be an
eduivalent document. Similarly, a tool that réplaces
a minimal SGML document with an eguivalent one
uding various forms of markup minimization should
prpduce output equivalent to_its<input. For some
applications, it may be useful-to verify that input
ard output are identical ~Other forms of compari-
sdn depend on particufat-applications.

502 0>

5.p.4 Systemsthat use SGML as an interme-
diate form

Alsystem-may use SGML even if both its original
input andfinal output have some other form. Such
a [system creates an SGML document and then

— one or more identifiers, such_fag 1SO
8879:1986(E) or ISO 8879:1986/A1:19B8(E),
indicating the effective edition of ISO 8879 used
in preparing the test suite;

— one or more identifiers, such as| ISO/
IEC 13673:2000(E), indicating the effectije edi-
tion of this standarddused in preparing the test
suite and in any jmplementations of RAST and
RACT used to generate results of those applica-
tions provided with the test suite;

— the fallowing statement, translated if the doc-
umentisinot in English:

A tést suite can indicate that an SGML system is
nonconforming by providing a test on whith the
system fails. However, no test suite can|prove
that an SGML system is fully conform|ng or
predict the results the system would obtain on
untested documents.

— the following statement, translated if the doc-
ument is not in English:

When a tested system produces results| other
than those expected by a test suitg, the
discrepancy may result from an error in|either
the test suite or the tested SGML system.

— a description of the types of SGML slystem
that can be tested by the test suite. This dgscrip-
tion, for example, indicates whether the teqt suite
is restricted to a particular application. It also
identifies any provisions of this standarfl that
could not be observed — naming conventions
that are incompatible with an application's|docu-
ment type declaration, for instance;

ProCeSSES rtooptaim another resutt: uepenuing on
the implementation, it may be possible to test the
embedded SGML parser in another application.
Furthermore, if the intermediate SGML document
can be saved, the system can be evaluated as a
system that produces SGML. In other cases, sys-
tem-specific testing is required.

© ISO/IEC 2000 — All rights reserved

— indication of whether the test suite explores
validation as well as conformance of SGML doc-
uments; in other words, whether some test
cases are deliberately erroneous documents;

— description of the document character sets
used in the test suite in the syntax of the docu-

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

ment character set parameter of the SGML

declaration, with descriptive comments, if
desired;
— a list of all optional SGML features

addressed by the test suite in the syntax of the
feature use parameter of the system declaration,
with descriptive comments, if desired,;

— alist of all optional SGML features not cov-
ered by the test suite, with a statement that the
results do not predict the tested system's perfor-

mentation of RAST that generated the results
is capable of producing the error indication,

#ERRORsee 14.6.2);

— indication of whether the test suite provides

RACT results for individual tests;

— the number of test cases in each category

listed in clause 13, as well as identification

of any

new categories defined for this test suite, with

the number of test cases in each.

mance on documents using these features. The
list is presented in the syntax of the feature use
parameter of the system declaration, with
descriptive comments, if desired;

— a description of the concrete syntaxes
included in the test suite in the syntax of the con-
crete syntax scope and concrete syntaxes
supported parameters of the system declaration,
with descriptive comments, if desired;

— a description of the capacity sets included in
the test suite in the syntax of the capacity set
parameter of the system declaration, with
descriptive comments, if desired;

— an indication of whether some test cases
include explicit SGML declarations or all test
cases have implied SGML declarations;

— indication of whether the test suite is accom=
panied by RAST results for individual tests and,
if so:

— the system declaration of the implementa-
tion of RAST used to create_the results.
Descriptive comments may, be added. The
system declaration shall ngt indicate that an
optional feature is supported unless the imple-
mentation is able te~interpret all processing
instructions that direct RAST's processing of
that feature (see 14.6.13, 14.6.14, and
14.6.15).

NOTE - Ideally, the implementation of RAST should
support all.character sets, variant concrete syntaxes,
optionalfeatures, and variant capacity sets addressed
in the\tést suite. Since such an implementation may
not be available when the test suite is constructed,
however, it is important that any discrepancies be fully

0.2 Iest Case documentation

The documentation shall also include @ stat
of objective (SOO) for each test., The
describes the primary aspect of, the SGM
guage described in the test case) 'SOOs ard
and concise statements, whieh-may be direg
tations from 1SO 8879(possibly from

productions, notes, Nindented example
annexes. A test's SOO appears as a cor
within the test case) Furthermore, the SOOs
tests in the test suite shall be listed in a se
report. The, SOO report allows an individ
review the'scope and some of the accuracy
test suite without inspecting the test cases

Pment
SO0
| lan-
clear
t quo-

syntax

5, Or
hment
for all
hbarate
ual to
of the
them-

selves: The document shall include the name of

the\test case corresponding to each SOO.

When a test suite includes variations of one
ple, readability of the SOO documentation g
increased by extracting the common princip,
a major SO0 and the variations into minor $
The SOO comment in the test case thenis th
catenation of the associated major and

SOO0s. An example of a major SOO is “A

can begin with other prolog.” Associated

SOOs might be:

— An other prolog can be a cor
declaration;

— An other prolog can be an s separator

— An other prolog can be a proc
instruction.

6.3 Naming SOOs

princi-
an be
e into
500s.
e con-
minor
prolog
minor

nment

PSsing

Each SOOQ, including major and minor SOO

, shall

described.

If the test suite provides test cases for optional
features not supported by the implementation
of RAST, RAST results shall not be provided
for those particular tests;

— indication of whether the particular imple-

be given an eight-character name. Letters in SOO

names are always lowercase. Each SOO

name

shall consist of a three-character unique identifier
followed by a five-character clause identifier.

The first character in the unique identifier is a

letter.

If the letter is ‘g’, ‘p’, or ‘i, than the test shall be a

© ISO/IEC 2000 — All rights reserved

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

conforming or erroneous document according to
the following table:

First letter ldentifies a test of a

g conforming (or “good”) document
p erroneous prolog

i erroneous document instance

Any other first letter may be used, but this standard
does not assign meaning to other letters.

NOTE - For example, implementors of large test
suites might define additional conventions when there

ISO/IEC 13673:2000(E)

When a test involves a construct defined in a fig-
ure, the first three characters in the clause identifier
are fig . (Itis not expected that any future version
of 1SO 8879 will add a subsubclause numbered
15.18.16, so these clause identifiers are effectively
unique.) The fourth character is the figure count
(using the 1-9, a-z numbering scheme just
described). The last digit identifies the row in the
figure, if relevant, and is otherwise 0.

NOTE - The assignment of clauses to SOOs is sub-
jective. For example, individuals may disagree

e mure oUuUsS 1T Urie UI' L;IU LdlUgUliUb iII LiIU clIUUVU
able than there are three-character combinations
beginning with a particular letter. Implementors might

Iso use different initial letters to avoid duplicating the
unique identifiers of an earlier test suite.

The second and third characters of the unique
identifiers may be letters or digits, and no signifi-
cgnce is attached to the choice of characters.

The clause identifier is a five-character code indi-
cdting the clause in ISO 8879 defining the primary
a%pect of SGML to be tested. Each character is a
letter or digit corresponding to a numeric value.
Digits represent themselves; the letter ‘a’ corre-
sgonds to the number 10; ‘b’ corresponds to 11,
ete. The letter 'z’ is used for all numbers over 34.
The first character identifies the clause, the second
cHaracter the subclause, the third the subsub-
clause, the fourth the subsubsubclause, and the
fial digit the paragraph.

Clause headings are not counted for the purpose
of| this numbering. All other text blocks whose
sgmantics require they be formatted starting at the
bdginning of a line are considered to be para-
grpphs for this purpose. For example, each syntax
prpduction, note or paragraph® within a note,
inflented example, list itent, rahd list heading is
cdunted as a separate paragraph.

Fqr tests relevant te “higher-order subdivisions in
IS0 8879, zeroscare used for the lower-order
clause number{Fer example, a test of a document
with an erreneous prolog based on the second
pdragraphefClause 10.4.2 would be given a name
of{the form pxxa4202 where “Xx™ represents two
arpitrary letters or digits.

whether a test primarily investigates a system|s han-
dling of an ATTLIST declaration or of an.aftribute
value.

6.4 Revising SOOs

As a test suite is revised over.time, SOO names
shall remain stable. If a SOO.is deleted, its|name
may not be assigned to a‘lnew SOO. The textof the
SOO may be correctedy’however. A singlel SOO
may be converted into a major SOO with spveral
variations, a major SOO may become a [minor
SO0, and a minor SOO may become a majof SOO
or a single<SOO. Furthermore, the clause idegntifier
may be.corrected. For example, the SOO author
may_initially associate a SOO relating to atfribute
values ' with the clause defining a relevant dgclara-
tion; in a revision, he may consider it|more
accurate to identify the SOO with the clauge that
deals with the specification of attribute values.

7 Types of tests

SOQOs, and corresponding tests, fall into tw@ main
(possibly overlapping) groups:

— Normative, those that test a system's adher-
ence to the SGML standard,;

— Volume, those that test the quality |of an
implementation.

The normative category can be further divided into
SOOs and tests that

— relate to a single construct of SGML;

The paragraph number may be left as 0, if the SOO
is not associated with a particular paragraph.

As mentioned in clause 6, a test suite identifies the
effective edition of ISO 8879 on which it is based.
This information is needed to interpret clause
identifiers.

© ISO/IEC 2000 — All rights reserved

—retate—to—a—singte—combinationr—of—SGML
constructs.

SOOs for normative tests are often quotations, or
paraphrases of quotations, from ISO 8879.

The volume category can be further divided into
SOOs and tests that

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

— exercise a tested system with variations of
normative tests;

— stretch a tested system's capabilities (e.g.,
exploring memory limits, maximum integer size
on a computer system, etc.).

Within these groups, ordinary tests are those that
conform to the naming, organization, and format-
ting requirements of this standard. Since these
requirements are compatible with, but more restric-
tive than, those of ISO 8879, it is conceivable that

— Insofar as possible, tests of nonconforming
documents contain at most one error;

— Some SGML implementations use separate
programs to process the prolog and the docu-
ment instance. For the convenience of
implementors of such systems, tests are classi-
fied by whether they exercise the prolog or the
document instance;

— Eachtestillustrates a single SOO, or a single
major SOO combined with a single minor SOO.

arl erroneous SGML system might correctly pro-
cgss all ordinary tests but be unable to handle
other SGML documents. Therefore, to conform to
th|s standard, a test suite shall include at least one
arjomalous test that deviates from each require-
ment for ordinary tests. An anomalous test shall
cdnform to all requirements for ordinary tests
eqcept those, identified in its SOO, that it intention-
ally violates.

8| General requirements for individual
tepts

All tests in a test suite shall meet the following
refluirements:

— Tests are classified by the primary part of the
SGML language addressed. However, a coms=
plete SGML document contains multiple
constructs (e.g., both a prolog and a doetiment
instance). Tests can be grouped into overlapping
categories according to the constructs:they test.
A standard definition of categories'is’provided in
clause 13. Comments in evenxtést identify all
relevant categories;

— Tests are commented to identify closely
related tests in the test-suite. For example, sup-
pose one test verifies that a name of maximum
length is accepted and another verifies that it is
an error if a.name contains too many characters.
CommentSywithin each test should mention the
other;

— ~ Each test is identified as an erroneous SGML

However, multiple instances of the designated
aspect of the language may appear in‘an-individ-
ual test. For example, to illustrate-that| (with
appropriate naming rules) case, isynot signfificant
in generic identifiers, a singletest may ifpclude
start-tags in which the same_generic iden:rifier is
entered in lowercase,~uppercase, and mixed
upper- and lowercase;

NOTE — When a_test'is intended to illustratd some
conjunction of different SGML constructs, the combi-
nation is identified in the SOO. Thus, the test still
illustrates a single SOO.

— The 'size of a test is minimized to exclude
superfluous content; every construct used|in the
test'case is directly relevant to the principal
aspect of SGML being tested. This guideline is
not enforced to the extreme of sacrificifg the
readability or comprehensibility of the tegt. For
example, since #PCDATAIs defined as zpro or
more characters, the minimal string satisfying
each instance of #PCDATAIs the empty ptring.
Tests are more readable, however, if #PCDATA
is realized with a short phrase relevant fo the
test's SOO.

NOTE — Adherence to these guidelines is oftgn sub-
jective. For example, individuals may disagreq about
whether a particular pair of tests should bg com-
mented as being closely related.

9 Test case naming conventions

Each ordinary test has an eight-character hame,
possibly with a three-character suffix. The test
name is the same as the name of the corregpond-

ocument oras.a rnnfnrming document;

— Some tests are designed to verify that a sys-
tem is not making a particular mistake. Such
tests are written so that a system that makes the
mistake is likely to interpret a conforming docu-
ment as nonconforming or a nonconforming
document as conforming;

ing SOO, as defined in 6.3 (the name of the minor
SOQO, if the test is based on a major and minor
SOO pair). Suffixes are added to test names when
a test suite includes equivalent documents. All
equivalent documents have the same eight-char-
acter name and different, arbitrarily assigned
suffixes.

© ISO/IEC 2000 — All rights reserved

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

NOTE — On computer systems where files are identi-
fied by a name and an extension, it may be convenient
to place each test case in a separate file whose name
is the same as the test name and whose extension is
the same as the suffix.

10 Requirements for SGML names and
literals

It may be efficient in some environments to com-

ISO/IEC 13673:2000(E)

Thus, a test case named p7b94402 that uses two
entities, one attribute, and ten values would name
the entities p7b-el and p7b-e2 , the attribute
p7b-al , and the values p7b-v01l through p7b-
v10.

NOTE — Although RAST produces attribute informa-
tion in lexicographic order, the naming conventions
ensure that lexicographic order usually corresponds
to the order in which attributes appear in the corre-
sponding ATTLIST declaration. The coincidence of
the lexicographic and declaration orders simplifies
manual comparison of an ordinary test and its RAST

bipe—muttipte tests Mo & Smngle document.
Therefore, names shall be unique to each test.
Names shall also indicate the function of the
ngmed object. Similarly, literals shall indicate their
fupction. To meet these goals, SGML names and
litgrals in ordinary tests are selected as follows:

— Each name or literal other than a number or
number token begins with the three-character
unique identifier of the test case name;

— Only lowercase letters are used in names
other than reserved names and in literals;

— The test's document element has the same
name as the test;

— In literals and in names other than that of the
document element, the unique identifier is fol-
lowed by a hyphen, a one-letter code to illustrate
the construct being named, and a sequence
number within a test. The one-letter codescare

a — Attribute;

e — Entity;

g — Generic identifier;
i — Unique identifier;

| — Link set;

m— Minimum literal:

n — Notation;

s — Short réference map;
t — Linktype;

v — Value of attribute;
X< Miscellaneous.

output.

The naming conventions are not applied to anom-
alous tests that are incompatible with them.

NOTE — For example, this namifg,scheme carnnot be
used to test:

— Name tokens that-are’not names;

— A parameter entity with the same namg as a
general entity;

— Name-length violations; and

— Afvariant concrete syntax’s use in a ngme of
natne'characters that are not name characters in
the reference concrete syntax.

11 Conventions for testing string length

Ordinary tests dependent on the length of strings
place the current string length as a decimal integer
within the string in the following locations:

— immediately following each RS characier;
— every ten characters within the string;
— immediately before each RE character

RS and RE characters are included in the charac-
ter count. The last digit of the string length agpears
in the indicated position.

NOTE — For example, if the string is more than ten
characters long, the digit ‘1’ appears as the ninth char-
acter and ‘0’ as the tenth

The sequence numbers following these codes
are assigned in the order in which they occur in
the test case and are unique to each code.
Leading zeros are prefixed to the sequence
numbers if necessary so that, within a test, each
number following a given code has the same
length.

© ISO/IEC 2000 — All rights reserved

The ten-character marker is omitted if the charac-
ters to represent it overlap the beginning- or end-
of-record marker, or abut the preceding ten-char-
acter marker with no intervening spaces. Note that
these requirements apply to the SGML source doc-
ument rather than the RAST result.

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

IS

Fi
ve
24
th
es

12

C(

C
ar
er
hd
ta
m
id
e

T
gi

O/IEC 13673:2000(E)

<?

3...10........ 20........ 30........ 40........ 50........
64....70........ 80........ 90....... 100....... 110.....
125..130....... 140....... 150....... 160....... 170
185..190....... 200....... 210....... 220....... 230

180
240>

Figure 1 - A 240-character processing instruction

jure 1 gives an example of the string-length con-
ntion. It shows a processing instruction that is
0 characters long, including the RS character at
b beginning, and the RE character at the end, of
ch line.

Source document formatting
nventions

bnventions for indentation, use of blank records
d comments (especially at the beginning and
d of each test) promote readability of tests and
man scanning of information and also simplify
5ks that the user of a test suite may wish to auto-
hte. For example, a fixed position for the generic
bntifier of the document element makes it easy to
tract.

erefore, ordinary tests follow the general pattern
en below:

<IDOCTYPE name |
<!--Categories:
category,

category,

>
<!--

shott description of test, including its SOO
>

An example of such a test is the'following:

<IDOCTYPE @5i79413 |
<!--Categories:
attribute
-->
<l--
An empty attribute value literal can
be specified if the type of the
attribdte) value is CDATA (Clause
7.9.44, Paragraph 3).
s>
<IELEMENT @g5i7941 3 - - ANY>
<IELEMENT g5i-g 1 - - (#PCDATA)>
<IATTLIST g5i-g1

g5i-al CDATA #IMPLIED>
>
<gb5i79413>
<gbi-g1 gbi-al="">
</g5i-g1>
</g5i79413>

In particular:

The first several records of each ordinary test
contain, in order, each starting in the first charac-
ter of the record:

a) the start of the document type decla
through the dso;

b) the beginning of a comment decla
introduced by the word “Categories:”;

ration,

ration,

aeclarationy .
. c) one or more records each containing a
declaration, ; : .
single category name as described in
clause 13 (in uppercase, lowercase, or a
mixture);
1> d) the closing delimiters for the comment
document instance declaration;
10 © ISO/IEC 2000 — Al rights reserved

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

e) the opening delimiter for a second
comment declaration;

f) one or more lines containing a brief
description of the test. This description begins
with the test's SOO, including the associated
clause and paragraph numbers. The SOO
may be followed by additional text explaining
how the elements, data, and other constructs
within the test support the principle described
by the SOO.

ISO/IEC 13673:2000(E)

13 Test categories

As mentioned in clause 12, tests are classified by

category. Some categories are listed below, along

with an indication of whether they refer to con-

structs that conforming systems must support or to
optional constructs. A particular test suite may
define its own categories in addition to those listed
here:

ambiguous content model (optional)
anomalous test (required)

g) the closing delimiters for the comment
declaration;

h) one or more records containing the
document type declaration subset, composed
of several declarations;

i) the closing delimiters for the document
type declaration;

j) the document element begins in the next
record.

— There are no spaces or blank records at the
beginning or end of a test;

— Each test ends with a record end;

— In markup declarations, ps+ in the syntax
productions of ISO 8879 is usually realized by a
single SPACE, or by a comment with a single
SPACE on each side. To avoid a record lenger
than 60 characters, such a SPACE can be
replaced by an RE, and successive,records
within a single declaration may (be' indented.
Other than an RE that separates two declara-
tions, nothing is inserted in afrordinary test for a
|ps#or ds#in a production-0f-ISO 8879, unless a
separator is required;

— Each markup deglaration begins in the first
character of a new-record.

Tao facilitate precessing on multiple computer sys-
tems, an-additional formatting requirement for
orfinary-tests is that records are limited to 60
characters.

attribute (required)

capacity (required)

character data (required)
character reference (required)
character set (optional)
comment (required)
CONCURoptional)

content model (required)

data tag (optiohal)

default entity (required)
delimiter-in-centext (required)
document instance (required)
element) (required)

exception (required)

explicit link (optional)
external identifier (required)
FORMALoptional)

general entity (required)
implicit link (optional)
marked section (required)
markup declaration (required)
markup minimization (optional)
multicode syntax (optional)
non-SGML character (optional)
non-SGML data entity (required)
notation (required)
OMITTAG(optional)

optional report (optional)
parameter entity (required)
processing instruction (required)

prolog (required)

guantity (required)

rank (optional)

record boundary (required)
replaceable character data (requifed)

Anomalous tests that deviate from the require-
ments for ordinary tests are required when
necessary to test a particular aspect of SGML. For
example, a comprehensive test suite must contain
at least one test in which a markup declaration
begins elsewhere than the first character of a
record.

© ISO/IEC 2000 — All rights reserved

required or optional status of ele-
ment (optional)

specific character data (required)

SDIF (optional)

separator (required)

SGML declaration (optional)

short reference (optional)

11

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

SHORTTAGoptional)
simple link (optional)
SUBDOoptional)

tag (required)

unique ID (required)

variant concrete syntax (optional)

14 The Reference Application for SGML
Testing (RAST)

RAST can also process documents that use other
concrete syntaxes. However, for some syntaxes,
such as those where the characters */ ' and ‘& are
used as name-start characters, the result may be
difficult for humans to interpret. The result is suit-
able, however, for machine comparison.

14.2 System identifiers

There is one way in which tests prepared for use
with RAST may vary from system to system. Sys-
tem identifiers are interpreted in a system-specific

This clause defines RAST.

NOTES

1 As discussed in clause 3, conflicts between the
definition of RAST and 1SO 8879 are resolved
according to ISO 8879, and conflicts between the
definitions of RAST and ESIS are resolved according
to ESIS.

2 The result of applying RAST to a particular docu-
ment is itself neither an SGML document nor an
interchange format. Its sole purpose is to indicate
whether a document was parsed correctly.

3 RAST produces identical results from variations
of an SGML document that are equivalent according
to the provisions of ISO 8879. For example, RAST
generates the same output for two SGML documents
that are identical except for one or more of the follow-
ing variations:

— The attribute specifications within a start-tag
appear in different orders;

— One document includes a start-tag with_an
attribute specification in which the attribute wvalue
specification happens to be the same_as the
default value; the other document.emits this
attribute specification;

— One document includes an-RE that is ignored
according to the provisions)of 1SO 8879; the
other document omits this-RE;

— One document, uses omitted tag minimiza-
tion; the other does)not;

— One doctiment uses short references; the
other does.not.

The abave list is not exhaustive.

14.1., “Concrete syntax of the tested

fashion, and a RAS T implementation needngt con-
trol this interpretation. As a consequence;-system
identifiers in tests may have to be changed manu-
ally from system to system, and the.RAST |result
may legitimately differ in the diSplayed vallies of
system identifiers.

Two ways of minimizing the effect of this prpblem
exist:

— minimizing the-number of tests incorpgrating
system identifiers;

— seleeting” system identifiers likely to be
accepfable on a wide range of computer
systefns.

NOTE — Many computer systems accept file nagnmes of
up to eight letters or digits followed by a period and a
three-letter extension.

14.3 Processing instructions that direct
RAST

RAST operates on information exchanged
between an SGML parser and the rest of an SGML
system. Annex A lists the information that mgves in
each direction. When information flows {o the
parser from other components, RAST deterqmines
the information content from the system data of
certain processing instructions. These procegssing
instructions are easily recognized because their
system data always begin with the charpcters
rast .

In particular, RAST uses processing instructipns to
determine which document type declaratior]s and
which link type declarations are active, to [select
link rules, and to determine whether to |parse
SGML subdocument entities. The format and inter-

dc ormant
TOTTTCTIT

RAST was designed to produce human-readable
results from SGML documents that use the core
concrete syntax, the reference concrete syntax, or
some variant concrete syntax that differs from the
reference concrete syntax only in its choice of
short-reference delimiters.

12

pretation of these processing instructions are given
in 14.6.13, 14.6.14 and 14.6.15. The format is
defined in productions using the same notation as
that used in 14.6 to define RAST. To avoid confu-
sion, productions for processing instructions are
identified by letters instead of the numbers that
label the productions defining the RAST result.

© ISO/IEC 2000 — All rights reserved

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

14.4 Requirements for implementing RAST

An SGML system that implements RAST needs
certain capabilities beyond those required by
ISO 8879. In particular, such a system shall be
able to:

— produce the RAST result in a machine-read-
able form;

— sort strings in lexicographic order;

— interpret and act on the processing instruc-

ISO/IEC 13673:2000(E)

14.6 Syntax of the RAST result

This subclause defines RAST through a formal
description of its result.

RAST generates one or more lines for each com-
ponent of a document's structure. Lines
representing data are clearly distinguishable from
lines representing markup, and each type of
markup is distinct. The presence of an LE at the
end of each item of markup means that each item
of markup and each piece of data starts on a new

tions defined in 14.6.13, 14.6.14 and 14.6.15, in
order to test certain optional features.

Fyrthermore, the RAST result is expressed in a
syistem-dependent character set. All characters
mentioned in the definition of the RAST result in
14.6.2 appear in delimiter strings in the reference
cdncrete syntax, are name characters in the refer-
erjce concrete syntax, appear in the document
input to RAST, or are uppercase counterparts of
loyvercase letters in the input document.

14.5 Notation

The RAST result is described formally in a variation
of|the production notation found in ISO 8879. The
eduals sign in each production is preceded by a
square-brackets enclosed list of the productions
that use the syntactic variable being defined. In
addition, each syntactic variable after the equals
sign is followed by the number of the production
that defines it, also enclosed in square brackets.

The terminals of this notation are listed belew:

— Name, A name as defined by.the concrete
syntax of the parsed document (shown in the
style of a “terminal variable,-even though it is not
a character class)

NOTE - If the concrete Syntax permits, a Name may
contain nonprintable characters.

— Data Character’, A printable character;

— LE, Theisystem representation of the end of
an output.line. The LE may in fact be the same
character that is used in input as the RE.

NOTE — Line ends must be represented in a system-
ppnndnnf manner in order ta allow the RAST repre-

line.

14.6.1 Uppercase and lowercase Jetters ip
the RAST result

RAST outputs many names and‘literals fropm its
input document. Clause 10 requires many letters in
names and literals in test cases to be Iowerc}se. In
contexts in which 1ISO.8879 mandates substitution
of the uppercase counterpart for a lowercase|letter,
RAST outputs the-uppercase form.

NOTE — Therequirements of clause 10 and |upper-
case substitution allow RAST to test interpretgtion of
SGML©aming rules.

14.6.2 * The RAST result

[1] ™ RAST result [11]=
(processing instruction data[18] #,
((active link{26] #,
base document element|2]) |
concurrent document elemenf33]+)
processing instruction data[18] #) |
(“#ERROR| “#RAST-PI-ERROR"), LE)

RAST produces the single word #ERRORiIf the
parsed document is not a valid SGML docyment.
An implementation of RAST within a confgrming
SGML system that is not a validating SGML sys-
tem need not be able to produce the| error
indication. An implementation of RAST that inter-
prets the processing instructions defingd in
14.6.13, 14.6.14 and 14.6.15 produces #RAST-
PI-ERROR if a processing instruction with system
data beginning rast does not meet the rgquire-
ments of one of those three subsubclauses.

NOTES

sentation to be easily examined and manipulate('j by
humans.

The processing instructions that direct RAST’s pro-
cessing of optional SGML features as described in
14.3 use the additional terminal:

— String , a sequence of SGML characters.

© ISO/IEC 2000 — All rights reserved

1 Animplementation of RAST may need to discard
a partial output file to produce either error indication.

2 RAST generates #RAST-PI-ERROR when it ex-
pects a processing instruction that was not provided.

3 #RAST-PI-ERROR indicates an error in a test
case or in an implementation of RAST. It should never
appear in the RAST results provided by a test suite.

13

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

RAST uses processing instruction data to show the
system data of all processing instructions that
occur in a document, in the order in which the pro-
cessing instructions appear. It reports processing
instructions that occur in the prolog prior to gener-
ating any active link, base document element, or
concurrent document element. Similarly, it reports
processing instructions that appear at the end of
the SGML document after it finishes the base doc-
ument element or the last concurrent document
element. All other processing instructions are

tag because it has declared content EMPTYor has
a specified content-reference attribute.

The Name in the element start and element end
surrounding the (possibly empty) parsed content of
an element is the generic identifier of the element
being represented. The closing bracket ending an
element end always appears on the same line as
the element’'s name. The closing bracket ending an
element start appears on a line by itself unless the
element start has no attribute information and no

Link information
HAH—HHOBHHAHOH-

reported Within the base ooCUITent elerent or a
cancurrent document element (a single processing
ingtruction may be reported within more than one
cgncurrent document element).

RAST produces at least one concurrent document
element when one or more active document types
arg identified. Otherwise, it produces a base docu-
ment element, possibly preceded by one or more
agtive link specifications. RAST's use of active link
is|explained in 14.6.14; that of concurrent docu-
ment element in 14.6.15.

14.6.3 Elements

[2] base document element [1]=
document element3]

[8] document element [2]= simple link
information[28] #, parsed element{4]

[4] parsed element [3, 5, 33]= element start6],
parsed content5] *, element end[7]

[5] parsed content [4]=

external entity[17] | parsed element4] |
processing instruction data[18] |

data line[20] | internalsdata entity[19] |
link set information[30}

[6] element start [4]=~[\"y Name,

(LE, ((attribute:information[8]+,
link information[29]?) |

link information[29]))?,

‘1" AE

[7] elementend [4]="“[/ ", Name, (LE, link set
information[30])?, “] 7, LE

RAST represents every item of contentwith garsed
content. It reports items of parsed €ontent|in the
same order as the corresponding information
appears in the parsed document:

14.6.4 Attributes

RAST reports attribute’ information for | each
attribute in the element's ATTLIST declafation.
RAST reports attributes in the lexicographic| order
of the attribute-names. This order is not necesgsarily
the order in‘which the attributes are specifiedin the
document jnstance, but is ordinarily the order in
which ‘they appear in the ATTLIST declgration
(seeclause 10).

[8] attribute information [6, 12, 27, 28, 31, 32]=
Name, “=", LE, (("#IMPLIED ", LE) |
((markup data[21] | internal sdata
entity{19]) #, (external id information[[L4] |
entity information[9]+)?))

The Name in an item of attribute information|s that
of the attribute for which information is being given.

For unspecified impliable attributes, incjuding
unspecified content reference attributes, the
attribute information is #IMPLIED . Otherwige, the
value is represented by zero or more instanges of
markup data and internal sdata entity. The| latter
can appear only in the representation of chgracter
data attribute values. In all other respects, the val-
ues of all types of attributes appear the same.

Each notation attribute value that appears |in the
RAST result is followed immediately by the |exter-
nal id information for the notation

Each element in an SGML document is repre-
sented in the RAST result by a parsed element.
The document element, all proper subelements,
and all included elements are represented in the
same manner. This representation includes both
an element start and an element end, even if the
element is required to be entered without an end-

14

Each value for a general entity name attribute or a
general entity name list attribute is followed by the
entity information for each of the entity names that
appear in the attribute value. Where there is more
than one entity name, the entity information is
given for the different entity names in the same

© ISO/IEC 2000 — All rights reserved

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

order as the entity names appear in the attribute
value.

NOTE — The attribute value is displayed as recog-
nized by an SGML parser — after entity expansion and,
where appropriate, removal of extra spaces and case
shifting of letters. In attribute values that consist of two
or more names, name tokens, numbers, number
tokens, entity names or ID references, consecutive
tokens are separated by one SPACE.

14.6.5 Entity information

[9] _entity information [8]=

ISO/IEC 13673:2000(E)

14.6.6 External identifiers

[14] external id information [8, 10, 12]=
(public identifier information[15],
system identifier information[16]?) |
system identifier information[16] |
(“#SYSTEM, LE, “#NONE, LE))

[15] public identifier information [14]=
“#PUBLIC”, LE, (markup
data[21]+ | (“#EMPTY, LE))

(external entity information[10] |
internal entity information[13]),
“#END-ENTITY”, LE

[1D] external entity information [9, 17]=
(“#SUBDOC LE, external id
information[14], parsed
subdocument{11]?) |
(“#CDATA-EXTERNAL, LE,
entity information details[12]) |
(“#SDATA-EXTERNAL, LE,
entity information details[12]) |
(“#NDATA-EXTERNAL, LE,
entity information details[12])

[1L] parsed subdocument [10]=
“#PARSED-SUBDOCUMENTE, RAST
resulfl1]

[1R] entity information details [10]=

external id information[14],
“#NOTATION=, Name, LE, external'id
information[14], attribute information|8]

[1B] internal entity information [9]=
(“#CDATA-INTERNAL, LE,
markup data[21]) |
(“#SDATA-INTERNALY LE, markup
data[21]#)

Whether external entity information includes a
parsed subdocuniéntis discussed in 14.6.13.

In| entity infortnation details, the first external id
informationis’ that declared for the entity, and the
sgcondtis: that declared for its notation. RAST
reports.this information both when the entity is ref-
ereneed in content and when the entity's name

[16] cyatcnl rdentiffer-information [14]—
“#SYSTEM, LE, (markup data[21]+)|
(“#EMPTY, LE))?

RAST generates public identifierinformatiorjwhen
it reports an external identifiefcthat has a |public
identifier. If the external identifier also has a slystem
identifier, RAST also generates system identifier
information. When reperting an external identifier
that does not have apublic identifier, RAST gener-
ates system identifier information. In both [public
identifier information and system identifier informa-
tion, #EMPT Y-indicates the empty literal. RAST
uses #NONEwithin system identifier informaion to
indicate/that an external identifier has neither a
publiciidentifier nor a system identifier (that is, that
thev“external identifier consists solely gf the
reserved name SYSTENL

NOTES

1 RAST displays the text of public and $ystem
identifiers as normalized by an SGML parsér. For
example, extra spaces are removed from |public
identifiers.

2 RAST reports the public and system identifjers for
notations and external data entities and dops not
reflect any resolution the entity manager mgkes of
these identifiers. No meaningful resolution of ar) exter-
nal data entity is needed if an SGML documegnt will
never be processed by an application othgr than
RAST, as is the case for documents intended only for
testing SGML parsers.

14.6.7 External entities

[17] external entity [5]= “[& ", Name, LE,
external entity information[10], “] ", YE

The Name in an external entity is the name|of the
referenced general entity.

appears in the value of a general entity name
attribute or a general entity name list attribute.

RAST reports attribute information for each
attribute declared for the associated notation. As
with start-tag attributes, data attributes are dis-
played in lexicographic order by attribute name.

© ISO/IEC 2000 — All rights reserved

The closing bracket ending an external entity

always appears on a line by itself.
14.6.8 Processing instructions

[18] processing instruction data [1, 5]= “[? 7,
(LE, data line[20]+)?, “1 ", LE

15

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

The data lines in processing instruction data con-
tain the text of a processing instruction recognized
by the SGML parser.

The closing bracket ending processing instruction
data appears on aline by itself unless the process-
ing instruction being represented contained no
text.

NOTE — RAST produces processing instruction data
even for those processing instructions, defined in
14.6.13, 14.6.14.1, and 14.6.15, that it interprets to
determine processing of SUBDOCIINK and CONCUR

All the above values are surrounded by exclama-
tion marks except for #PCDATA content and
processing instructions, which are surrounded by
vertical bars. The only differences are the limita-
tions imposed by ISO 8879 on the data that may
appear in each context. For example, public identi-

fiers may not contain record-ends.
14.6.11 Internal SDATA entities

An internal sdata entity in #PCDATAor a character
data attribute value need not contain any charac-

features.

14.6.9
[

Data

=

D] internal sdata entity [5, 8]= “#SDATA-TEXT’,
LE, markup data[21]#, “#END-SDATA, LE

[2p] dataline [5, 18]= (“| ", Data Character +, | ",
LE) | special character22]

[2L] markup data [8, 13, 15, 16, 19]=
“I *, Data Character +, “! ", LE) |
special characte22]

[2R] special character [20, 21]= (“#RS’, LE) |
(“#RE', LE) | ("#TAB", LE) |
("#”, character number23], LE)

[2B] character number [22]=
nonnegative integeri24]

[24] nonnegative integer [23, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51]=

“0” | (non-zero digif25],

(“0” | non-zero digif25]) #)

[2p] non-zero digit [24]= 1" | “28] “3" | “4” | “5” |
“6" | “7"]"8"|"“9”

A [number that is used as.a“eharacter number is a
dgcimal number, with no-extra leading zeros, that

represents a character,
14.6.10 Uniferm-display of data

RAST displays all the following data values in a
urjiform manner:

—~ #PCDATAcontent;

Ters. T multiple adjacent speciic charactef data
entity references occur, RAST produces-an| inter-
nal sdata entity for each reference.

NOTES

1 The text of a specific chafacter data eftity is
represented differently when the-entity is referepced in
content than when the entity's name appears| in the
value of a general entity’ name or general entity name
list attribute. In the first:CaSe, the text is surrounded by
lines containing #SDATA-TEXT and #END-$DATA
and in the _Second #SDATA-INTERNAL and
#END-ENTITY.

2 References to SDATAentities can occur in|SGML
documents, in contexts not reflected in ESIS and
therefore/not reported by RAST, for example} in an
attribute value literal of an attribute whose dgclared
value is other than CDATA

14.6.12

RAST shows data characters as follows:

Data characters

— A printable character always appearg as a
Data Character . The character code that i$ used
to represent the letter ‘A’, for instance, is glways
displayed as ‘A’, even in specific charactef data,
where it may not represent the letter ‘A’;

— The character codes that are used to fepre-
sent record-start, record-end, and tab glways
appear as #RS, #RE, and #TAB, respectively, on
separate lines, even in specific characten data.
The tab character is reported as #TAB re¢gard-
less of whether it is declared in the SGML
declaration to be a function character.

NOTE - Since, unlike other data characters] these
representations are not surrounded by vertical pars or
exclamation marks, the occurrence of one of these
characters is distinct from a sequence of data gharac-
ters that happens to spell one of these codes;

— processing instructions;
— attribute values;

— the expansion of specific-character data
entities;

— public and system identifiers.

16

— All other characters are represented by a
character number.

NOTE — The above requirements pertain only to data
characters. All characters are represented by them-
selves within a Name. In particular, while RAST
represents nonprintable characters other than record-
start, record-end, and tab by character numbers when

© ISO/IEC 2000 — All rights reserved

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

they occur as data characters, it outputs such charac-
ters directly when they occur in a Name.

RAST never produces more than 60 Data Charac-
ters on a single output line. A sequence of more
than 60 consecutive Data Character s is divided
into several lines, each, except possibly the last,
containing exactly 60 Data Character s (plus what-
ever other characters are required on the line). In
particular, RAST produces multiple instances of
data line or markup data when more than 60 con-
secutive Data Character s occur.

ISO/IEC 13673:2000(E)

instruction to determine whether to report a parsed
subdocument for the value of the attribute whose
name lexicographically precedes the other. If the
value of a general entity name list attribute con-
tains multiple tokens that are names of SGML
subdocument entities, RAST applies parse sub-
document processing instructions to the tokens in
the order they appear in the attribute value.

If an SGML subdocument entity for which the appli-
cable processing instruction specifies yes is not a
valid SGMI document RAST outputs #FRRORas

Every line of data contains some data characters;
that is, RAST does not generate a data line when
arl element's content is empty or the value of a
character data attribute has no characters.

NOTE — Exclamation marks rather than vertical bars
are used to delimit data that appear inside markup.
This convention, which applies to attribute values,
specific character data entities, and system and public
identifiers, makes the distinction between data within
markup and other data clear to human readers of the
RAST result.

14.6.13 1)

SGML subdocument entities
[a] parse subdocument = “rast-parse-subdoc: 7,
(‘yes” | “no’)

A |parse subdocument processing instruction indi-
cdtes whether or not a following external entity
information for an SGML subdocument entity
includes a parsed subdocument. When RASE
erjcounters a parse subdocument processing
ingtruction, it adds it to the end of a list of.Saved
parsed subdocument processing instfuctions.
When a reference to an SGML subdocument entity
odcurs, or the name of an SGML ‘subdocument
ertity occurs as the value of a general entity name
atfribute or a token in the valye\of a general entity
ngme list attribute, RAST removes the parse sub-
dqgcument processing inStruction at the beginning
of|the list. If the processing instruction specifies no,
or|if the list was empty, RAST does not output a
parsed subdocument in the entity’s external entity
information. If;the processing instruction specifies
ygs, RAST outputs a parsed subdocument.

SEMLe subdocument entity names in attribute val-
ugséareprocessed in the order RAST reports them.

the result of the entire document; in other\words,
RAST does not output the error indicatien simply
as a parsed subdocument for the invalid suidocu-
ment. Otherwise, if such an entity contgins a
processing instruction with system data begjnning
rast that does not meet the requirements pf this
subsubclause or of 14,6.14.1 or 14.6.15, RAST
outputs #RAST-PI-ERROR as the result pf the
entire document.

14.6.14 LINK

This subsubclause describes how RAST rgports
the optional‘link features of SGML.

14.6:14.1
link-features

Processing instructions used with

[b] active Ipd = “rast-active-Ipd: ", Ndme,
(, ", Name) *

[c] link rule selection = “rast-link-rule: ,
String

RAST interprets the first active Ipd or actiye dtd
(see 14.6.15) processing instruction to appear in
the document. Each Name in an active Ipd pro-
cessing instruction is that of a link type declgration
to be made active. If the naming rules of the con-
crete syntax specify uppercase substitutipn for
general names, all letters in the Name must dppear
in uppercase.

NOTE — When the naming rules specify uppercase
substitution, a Name that appears with some|lower-
case letters in a link type declaration must appear with
all uppercase letters in a processing instructiop. This
requirement on processing instructions allows| RAST
to process tests involving the optional link faatures
regardless of whether letters in a link type| name

In"particotar, ifameterment hastwo generat erntity
name attributes and the values of both are names
of SGML subdocument entities, RAST uses the
first applicable parse subdocument processing

appear—r—uppercase—ot fowercase—Without it, an
implementation of RAST would need access to the
naming rules of the concrete syntax to investigate an
SGML system’s support of the uppercase substitution
specified in ISO 8879. Since the naming rules are not

1) Recall from 14.3 that productions for processing instructions that occur within test cases are identified by letters to
distinguish them from the productions identified by numbers that define the RAST result.

© ISO/IEC 2000 — All rights reserved

17

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

included in ESIS, the above requirement on process-
ing instructions increases the feasibility of
implementing RAST in any particular ESIS-based
SGML system.

The following conditions are errors that cause
RAST to output #RAST-PI-ERROR as the result of
the entire document:

— The processing instruction appears after the
start of the base document type declaration;

— A Name in the active Ipd is not the link type

PNV £ Ll Pl 1 + th nealaa-
T

of an active link type declaration. The Name in a
result element specification is the generic identifier
of the result element. If present, #INITIAL intro-
duces the result element specifications of link rules
whose source element specification is implied in
the initial link set. If there is more than one active
link, they appear in the same order as the link
names appear in the active Ipd processing instruc-
tion; the result element specifications appear in the
lexicographic order of the Names.

146143 Qimlnln link information

—~ The same string is used as more than one
Name in the active Ipd,

— The processing instruction lists more Names
than the SGML declaration permits to be active;

— The source document type name in an
explicit or implicit link specification is not that of
the base document type declaration.

Allink rule selection appears in the document
ingtance. It specifies the value of a link attribute to
uge for selecting a link rule when the next element
starts. In particular, RAST selects a link rule that
hgs at least one attribute whose interpreted and, if
the attribute is not character data, tokenized value
isthe String in the link rule selection.

Alsequence of adjacent link rule selections speci-
figs link attributes for successive following
elements. Such a sequence is useful when a test
cgse involves a sequence of omitted start-tags.

The following conditions are errors.that cause
RAST to output #RAST-PI-ERROR as the result of
the entire document:

— No link rule selection is(given prior to an ele-
ment with more than one‘\applicable link rule;

— More than one_rule; or none, have at least
one attribute whoSe,interpreted, tokenized value
is String .

14.6.14.2

[2B] active'link [1]= “#ACTIVE-LINK= ", Name,
LE, (“#INITIAL ", LE,
result element specification[27]+)?,

Active links

N

[27] result element specification [26, 30]=“[7,

Name, LE, attribute information[8]+,] 7,
LE

RAST generates an active link for each active link
type declaration. The Name in an active linkis that

18

[28] simple link information [3]=
“#SIMPLE-LINK= ", Name, LE;
attribute information[8] #,
“#END-SIMPLE-LINK ;. LE

RAST reports the link typesname and atfribute
information for each active simple link in simple link
information at the begirining of the document ele-
ment. The simple_link*information data appear in
the order the linkJtype names appeared |n the
active Ipd processing instruction.

NOTE ~RAST produces both an active link and sim-
ple link‘information for each active simple link.

14.6.14.4 Link Information

[29] link information [6]= (/ink set informatiopn[30],
link rule information[31]?) |
link rule information[31]

[30] link set information [29]=
“#LINK-SET-INFO ", LE,
result element specification[27]+

[31] link rule information [29]= “#LINK-RULE ”,
LE, attribute information[8] #,
link resul{32]?

[32] link result [31]= “#RESULTZ, ((Name,|LE,
attribute information[8]#) |
(“#IMPLIED ", LE))

If there is a current link set, RAST includes link
information within an element start. The link infor-
mation includes link set information if the gqurrent
link set has link rules whose source element|spec-
ifications are implied. In this case, the rul

result element specifications.

If the started element is an associated element
type for a link rule in the current link set, RAST
reports link rule information. Any attribute informa-
tion reports the link attributes of the selected rule,
determined as described in 14.6.14.1.

© ISO/IEC 2000 — All rights reserved

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

A link result is included in the link rule information
if the active link is an explicit link. It gives the result
element specification with any result attributes.

RAST reports link set information within an ele-
ment end if the link set current after the element
has link rules whose source element specifications
are implied. RAST also reports link set information
after a link set use declaration if the specified link
set has link rules whose source element specifica-
tions are implied.

ISO/IEC 13673:2000(E)

another that barely exceeds it. A validating parser
must correctly process the first document and
report an error on the second. However, such tests
are difficult to create using the reference capacity
set for two reasons. First, the limits in the reference
capacity set are large, and hence can only be
tested with large documents. Second, all the
capacities in the reference capacity set are the
same. It is therefore impossible to exceed any
other capacity without exceeding “TOTALCAP.
There is no requirement that validating or conform-

14615 CONCUR

[d] active dtd = “rast-active-dtd:
*, 7, Name) *

", Name,

[3B] concurrent document element [1]=
“#CONCUR% Name, LE,
parsed element4]

RAST interprets the first active dtd or active Ipd
(spe 14.6.14) processing instruction to appear in
the document. Each Name in an active dtd pro-
cgssing instruction is that of a document type
déclaration to be made active. If the naming rules
of[the concrete syntax specify uppercase substitu-
tign for general names, all letters in the Name must
appear in uppercase.The following conditions are
erfors:

— The processing instruction appears after the
start of the base document type declaration;

— A Name in the active dtdis not the document
type name of a document type declaration.in the
prolog;

—~ The SGML declaration does nat allow all the
specified document type declarations to be
active.

If [it uses an active dtd processing instruction,
instead of a base document element, RAST pro-
ddces a concurrent."decument element for each
adtive document type-declaration, in the order their
ngmes appear in‘the active dtd processing instruc-
tign. The Name in each concurrent document
element is\that of the associated active document
type detfaration.

capacity set. RACT was therefore defined-tp pro-
vide an optional method of evaluatingthis aspect of
SGML parsing. RACT reports a validating parser's
capacity calculations for an SGML"document. As
with RAST, there is no requiretment that a parser
be able to support RACT,

ng SGNIL Systemns be able 10 deline d Friant

RACT generates one linefor each capacity,|in the
order given in figure 5'of ISO 8879 (which defines
the reference capacity set). The line consists|of the
capacity name;‘a single space, and the numpber of
capacity points used in that category in that
document.

RACT.is formally defined below, in the samg nota-
tionnas that used in clause 14. Note that LE and
nonnegative integer are defined in clause 14{ As in
ISO 8879, SPACE denotes the space charafter.

[34] RACT result = totalcap[35], entcap[36],
entchcap[37], elemcap[38], grocap[39],
exgrpcap[40], exnmcap[41], attcap[42],
attchcap[43], avgrpcap[44], notcap[45],
notchcap[46], idcap[47], idrefcap[48],
mapcap[49], Iksetcap[50], lknmcap[$1]

[35] totalcap [34]= “TOTALCAP, SPACE,
nonnegative integer24], LE

[36] entcap [34]= “ENTCAP, SPACE,
nonnegative integer24], LE

[37] entchcap [34]= “ENTCHCAR SPACE,
nonnegative integef24], LE

[38] elemcap [34]= “ELEMCAP, SPACE,
nonnegative integef24], LE

15 The Reference Application for Capa-
city Testing (RACT)

To test conformance to the capacity constraints of

SGML, a test suite can include one document that
reaches each capacity defined in 1SO 8879 and

© ISO/IEC 2000 — All rights reserved

(39T —grprap {32 ="GRPCAR SPACE,
nonnegative integef24], LE

[40] exgrpcap [34]= “EXGRPCAR SPACE,
nonnegative integerf24], LE

[41] exnmcap [34]= “EXNMCAR SPACE,
nonnegative integer24], LE

19

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

[42] attcap [34]= “ATTCAP, SPACE,

nonnegative integefi24], LE

[43] attchcap [34]= “ATTCHCAP, SPACE,

nonnegative integef24], LE

[44] avgrpcap [34]= “AVGRPCAR SPACE,

nonnegative integefi24], LE

[45] notcap [34]= “NOTCAP, SPACE,

nonnegative integef24], LE

[46] notchcap [34]= “NOTCHCAP SPACE,

— if the tested system includes a validating
parser, the number of tests in the category that
the test suite and the tested system

— agree are conforming documents;
— agree are erroneous documents;

— do not agree to be conforming or
erroneous.

— if both the test suite and the tested system
support RAST, the number of tests in the cat-

[4

[4

[4

[5

5

T
be
dd

14

THh
te
in
by
T

a

re
to
SY
re
us
cd
in
fa

nonnegarnve ntegenzal, LE

/] idcap [34]= “IDCAP”, SPACE,
nonnegative integefi24], LE

B] idrefcap [34]= “IDREFCAP, SPACE,
nonnegative integef24], LE

D] mapcap [34]= “MAPCAR SPACE,
nonnegative integefi24], LE

D] |ksetcap [34]= “LKSETCAP, SPACE,
nonnegative integef24], LE

l] |knmcap [34]= “LKNMCAR SPACE,
nonnegative integefi24], LE

e value of each nonnegative integer is the num-
r of points of the indicated capacity in the
cument.

Test suite reports

is clause describes how to report theresults of
5ting an SGML system with a test\suite. The
ormation described here shall be accompanied
the documentation described.in-clause 6.

e performance of a particulat SGML system on
particular test suite~cannot be adequately
ported by a single score or quantity. Any attempt
do so might resultin'a low score for a conforming
stem that does,not implement an optional feature
peatedly tested in the test suite. Furthermore, a
er of SGML who has no need for some required
nstructtmay prefer to select a system that has
correctly implemented that required construct in
yorof a conforming system that does not provide

egory that are conforming documents-gnd for
which the RAST results produced) By the
tested system

— are the same as thos€ provided wjth the
test suite;

— differ from thoSe,provided with the test
suite;

— cannot/be-compared to those provided
with thectest suite because only one |of the
two implementations of RAST suppdrts an
optiohal feature used in the test;

~ \f the test suite and the tested system both
support RACT, the number of tests in the cat-
egory for which the RACT result generated by
the tested system is

— the same as that provided with the test
suite;

— different from that provided with the test
suite;

— names of tests on which the test suite and
the tested system produce different results;

— a pairwise comparison of all test categories,
constructed as follows from the categoryl com-
ments at the beginning of the tests. Eagh test
category is compared to every other categpry by
counting the number of tests in which both cate-
gories appear in the comments. This information
helps the reader of the report determine the sig-
nificance of the results. For example, suppose a
tested system has correctly implemented a con-
struct x, but misinterpreted a construct)} If all

an optional feature the user plans to use. There-
fore, results of running a test suite are reported as
described below:

— The report lists the following for each cate-
gory of test:

— the number of tests in the category;

20

tests of x happen to involve y as well, the high
count of tests in which the system and the test
suite produce different results might suggest a
problem in the implementation of x. Information
about the overlap of x and y tests, however,
informs the user that the problem might lie in the
latter category.

© ISO/IEC 2000 — All rights reserved

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

NOTE - In practice, a test suite may be developed in
conjunction with two or more implementations of
RAST. All should produce the same results for every
test. If this is not the case, and the implementor of the
test suite cannot determine which result is correct, all
variants shall be distributed with the test suite. The
documentation shall clearly identify tests for which
multiple results are provided.

17 Testing SDIF data streams

ISO/IEC 13673:2000(E)

SGML test suite that includes tests of SDIF shall
explore conformance to every aspect of ISO 9069.
A test suite restricted to a particular SGML applica-
tion that uses SDIF shall provide tests to explore
every aspect of SDIF relevant to that application.
Every general purpose SGML test suite that tests
SDIF shall test both the creation of an SDIF data
stream from separate entities and the separation of
an SDIF data stream into multiple entities. Applying
these operations in sequence should result in rec-
reation of the original entities, with the possible

A [EST3Uite that evaluates a SySEem's use of SDIF
shall be comprehensive. That is, a general purpose

EXCEPUON that Correspondimng entity decianations
may have different system identifiers.

© ISO/IEC 2000 — All rights reserved

21

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

(Blank page)

22

© ISO/IEC 2000 — All rights reserved

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

Annex A
(normative)

The 1SO 8879 Element Structure Information Set (ESIS)

This annex describes the Element Structure Infor-
mation Set (ESIS) which is implicit in ISO 8879.

NOTE — The provisions of clause 3 regarding conflict
with ISO 8879 apply.

There are two kinds of SGML application (and
the i i
application):

a) A structure-controlled SGML application
operates only on the element structure that is
described by SGML markup, never on the
markup itself;

b) A markup-sensitive SGML application can
act on the actual SGML markup and can act on
element structure information as well. Examples
include SGML-sensitive editors and markup
validators.

The set of information that is acted upon by imple-
mentations of structure-controlled applications is
lled the “element structure information set”

plicit in ISO 8879, but is not defined there explic-
. The purpose of this annex is to provide that
eXplicit definition.

E$IS is particularly significant for SGML.conform-
arlce testing because two SGML documents are
eduivalent documents if, when they are parsed
with respect to identical DTDs.anhd LPDs, their
E$IS is identical. All structure<eontrolled applica-
tigns must therefore produceridentical results for all
eduivalent SGML documents. In contrast, not all
markup-sensitive applications will produce identi-
cdl results from (equivalent documents. (For
ejample, a program that prints comment declara-
tigns or that colunts the number of omitted end-
tags.)

E$IS information is exchanged between an SGML

parserand the rest of an SGML system that imple-
ments_a_structure-controlled applirnfinn Althaot |gh

tion and on the APPINFO parameter of the SGML
declaration.

NOTES

1 This requirement does not prohibit a parser from
providing the same interface to both structure-
controlled and markup-sensitive applications, which
information (e.g., the| date),
and/or information that could be derived frem ESIS
information (e.g., the list of open elements):

2 The documentation of a conforpiing SGML sys-
tem that supports user-developed/Structure-controlled
applications should make application devglopers
aware of this requirement. Such.a system should facil-
itate conformance to~ this requirement by
distinguishing ESIS information from non-ESI§ in its
interface to applications{Note 1 in 15.3.5 of ISQ 8879
applies only to structure-controlled applicationg.

In the following description of ESIS, inform
identified as being available at a particular ppint in
the parseddocument. This identification shouild not
be interpreted as a requirement that the informa-
tion actually be exchanged at that point — all pr part
ofcit could have been exchanged at some| other
point. Similarly, there is no constraint on thg man-
ner (e.g., number of function calls) or format in
which the exchanges take place.

The ESIS description includes the information
associated with all of the SGML optional fegtures.
When a given feature is not in use, correspgnding
information is not present in the document,| ESIS
information is transmitted from the parser o the
application unless otherwise indicated.

ESIS information applies to a single parsed|docu-
ment instance. Therefore, if concurrent instances
are being parsed, the applicable document type
name must be identified. This requirement also
applies when parsing intermediate instances in a
chain of active links.

ESIS information consists of the identification of
the following occurrences, and the passing |of the
indicated information for each:

an implementation may choose to “wire in” some of
ESIS, such as the names of attributes, a structure-
controlled application need have no other knowl-
edge of the prolog than what ESIS provides.

A system implementing a structure-controlled
application is required to act only on ESIS informa-

© ISO/IEC 2000 — All rights reserved

a) _Inmalization

— The application must inform the SGML
parser of the active document types, the active
link types, or that parsing is to occur only with
respect to the base document type.

b) Start of document instance set

23

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

— For each active LPD, the link type name
and link set information (see (m) below) for the
initial link set.

c) Start of document element only

— For each active simple link, the link type
name and attribute information (see (j) below)
for the link attributes.

d) Start of any element

— Generic identifier;

Implementation-specific means can be used
to represent bit combinations that the applica-
tion cannot accept directly.

NOTES

1 Such bit combinations may be those of non-
SGML characters entered via character references,
but no significance is attached to this coincidence.

2 Bit combinations of non-SGML characters that
occurred directly in the source text would have been
flagged as errors, and would therefore never be
treated as data.

— Attribute information for the start-tag;

— For each applicable link rule, attribute
information for the link attributes;

— The application must inform the SGML
parser which applicable link rule it chose;

— For the chosen link rule, the result Gl and
attribute information for the result element;

— If the element has an associated link set,
the link set information.

e) End of any element, including elements
declared to be empty

— Generic identifier

— Link set information for the link set that is
current immediately after the element (includ-
ing processing any relevant “#POSTLINK”
parameter)

NOTE - If the element was empty, ESIS does nobindi-
cate why it was empty; that is, whether it was(detlared
to be empty, or whether an explicit content reference
occurred, or whether it just happened™to.‘contain no
data characters, subelements, or other-content.

f) End of document instancé:sét

NOTE — Processing instructions could occur between
the end of the documentrelement and the end of the
document instance sef:

g) Processing instruction
— System data

h) Link&et'use declaration
—, vk set information

i) Data

1) Attribute mformation

— All attribute values must be reperted and
associated with their attribute names.

NOTES

1 For example, a parseh could supply the
attribute names with each* value, or supply the
values in an order that'corresponds to a preyiously
supplied list of names:

2 The order ofithe tokens in a tokenized aftribute
value shall be‘preserved as originally specified.

— Each unspecified impliable attributgd must
be identified,;
NOTE)—"For example, a parser could identify such
atttibutes explicitly, or it could allow the applicgtion to
determine them by comparing the identified specified
attribute values to a previously supplied list of aftribute
names.
— There shall be no indication of whether an
attribute value was the default value;

— The order in which attributes are specified
in the attribute specification list is not part of
the ESIS;

— General entity name attribute vyalues
include the entity name and entity texf. The
entities themselves are not treated as faving
been referenced,;

NOTE — An application can use system serv|ces to
parse the entities, but such parsing is outside the con-
text of the current document.
— For notation attributes, the attribute|value
includes the notation name and nqtation
identifier;

— For CDATA attributes, referencés to

— Includes no ignored characters (e.g.,
record starts);

— Includes only significant record ends, with
no indication of how significance was deter-
mined. Characters entered via character
references are not distinguished in any way.

24

SDATFA—entities—in—attribute—valueliterals are

resolved. The replacement text is distin-
guished from the surrounding text and
identified as an individual SDATA entity;

— For CDATA attributes, references to
CDATA entities in attribute value literals are
resolved. The replacement text is not distin-

© ISO/IEC 2000 — All rights reserved

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

guished from the surrounding text.
k) References to internal entities

— The information passed to the application
depends on the entity type:

SDATA: replacement text, identified as an
individual SDATA entity.

Pl replacement text, identified as a processing
instruction but not as an entity.

— For other references, nothing is passed to

ISO/IEC 13673:2000(E)

attribute information for the data attributes are
also passed.

— For SGML text entities, nothing is passed
to the application.

NOTE — The replacement text is parsed in the context
in which the reference occurred, which can result in
other ESIS information being passed.

— For SUBDOC entities, the entity name and
entity text are passed. The application can

the application.

NOTE — The replacement text is parsed in the context
in which the reference occurred, which can result in
other ESIS information being passed.

I) References to external entities

The information passed to the application
depends on the entity type:

— For data entities, the entity name and
entity text are passed. If a notation is named,
the notation name, notation identifier, and

raaguire-that tha suhdocumeant antitv ha rarsed
Fegti-e-tHattHe-SHRao et e R-eHtty—P e

at the point at which the reference occufred.

NOTE — Parsing of the subdocument éntity can result
in other ESIS information being passed. The|occur-
rence of the end of the document instance sef of the
subdocument entity will indicate that subspquent
ESIS information applies to lthe’ element from which
the subdocument entity was, referenced.

m) Link set information

— All link rules whose source element speci-
fication is{mplied.

© ISO/IEC 2000 — All rights reserved

25

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

Annex B
(informative)

Sample tests and RAST results

This annex contains several typical test cases and their RAST results. These examples illustrate both ordi-
nary tests and RAST output.

B.1 A typical conforming document

The following is a typical test of a conforming document:

<IDOCTYPE g01b2404 [

<!--Categories:

element

markup declaration

prolog

>

<!--

HPCDATA is a primitive content token (Clause 11.2.4,
Paragraph 4, Production 129).

>

<IELEMENT g01b2404 - - (g 01-g1)>

<IELEMENT g01-g1 - - (#PCDATA)>

>
<g01b2404>

<g01l-g1>

parsed character data
</g01-g1>
</g01b2404>

Itd RAST result is:

[G01B2404]

[G01-G1]

|parsed character data|
[/G01-G1]

[/G01B2404]

BP An erroneous proleg

The following is atypical test of a document with an erroneous prolog:

<IDOCTYPE~p01b2201 [

<!--Categories:

element

markup declaration

prolog

->

<I--

Omitted tag minimization includes start-tag minimization and
end-tag minimization (Clause 11.2.2, Paragraph 1,
Production 122).

->

26 © ISO/IEC 2000 — Al rights reserved

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

