
INTERNATIONAL
STANDARD

ISO/IEC
13673

First edition
2000-05-01

Information technology — Document
processing and related communication —
Conformance testing for Standard
Generalized Markup Language (SGML)
systems

Technologies de l’information — Traitement documentaire et communication
connexe — Tests de conformité pour langage normalisé de balisage
généralisé (SGML)

Reference number
ISO/IEC 13673:2000(E)

© ISO/IEC 2000

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

ii © ISO/IEC 2000 – All rights reserved

© ISO/IEC 2000

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 734 10 79
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

© ISO/IEC 2000 – All rights reserved iii

Contents
Page

1 Scope... 1

2 Normative references .. 1

3 Precedence of ISO 8879 ... 2

4 Definitions.. 2

5 Use of SGML test suites .. 3

6 Test suite documentation... 5

7 Types of tests .. 7

8 General requirements for individual tests .. 8

9 Test case naming conventions .. 8

10 Requirements for SGML names and literals.. 9

11 Conventions for testing string length ... 9

12 Source document formatting conventions ... 10

13 Test categories .. 11

14 The Reference Application for SGML Testing (RAST) 12

15 The Reference Application for Capacity Testing (RACT) 19

16 Test suite reports ... 20

17 Testing SDIF data streams.. 21

Figure

1 A 240-character processing instruction ... 10

Annexes

A The ISO 8879 Element Structure Information Set (ESIS).......................... 23

B Sample tests and RAST results... 26

ISO/IEC 13673:2000(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

iv © ISO/IEC 2000 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC partici-
pate in the development of International Standards through technical committees established by the respective
organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields
of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and
IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 13673 was prepared by ANSI (as ANSI X3.190) and was adopted, under a special
“fast-track procedure”, by Joint Technical Committee ISO/IEC JTC 1, Information technology, in parallel with its
approval by national bodies of ISO and IEC.

Annex A forms a normative part of this International Standard. Annex B is for information only.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

© ISO/IEC 2000 – All rights reserved v

Introduction

ISO 8879:1986 and 8879:1986/A1:1988, Information processing – Text and office
systems – Standard Generalized Markup Language (SGML), define when a sys-
tem is a conforming SGML system. The determination of whether a system is a
conforming SGML system is of value both to potential users of such systems and
to their developers. This determination is, however, a complex process. To this
end, efforts are underway to develop test suites to validate conformance. Stan-
dardization of development and use of test suites assures consistency of results
and informs the public of the implications of the tests. Such formalism is provided
by this standard, which includes

– guidelines for the content of individual tests;

– rigorous conventions for naming test cases and the constructs used within
them;

– formatting and comment conventions;

– conventions for classifying test cases;

– conventions for documenting test suites;

– definition of a Reference Application for SGML Testing (RAST) that indicates
how an SGML parser interprets a test;

– definition of a Reference Application for Capacity Testing (RACT) that
reports a parser's capacity calculations;

– conventions for reporting a system's performance on a test suite.

This standard also addresses conformance to the related standard,
ISO 9069:1988, Information Processing – SGML support facilities – SGML Docu-
ment Interchange Format (SDIF), as SDIF is needed to connect the several entities
of an SGML document into a single object for interchange within OSI.

This standard may be used by those who develop SGML test suites, those who
build SGML systems to be evaluated by such suites, and those who examine an
SGML system's performance on a test suite as part of the process of selecting an
SGML tool.

ISO/IEC 13673:2000(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

© ISO/IEC 2000 – All rights reserved 1

INTERNATIONAL STANDARD ISO/IEC 13673:2000(E)

Information technology — Document processing and
related communication — Conformance testing for
Standard Generalized Markup Language (SGML) systems

1 Scope

This standard addresses the construction and use
of test suites for verifying conformance of SGML
systems. Its provisions assist those who build test
suites, those who build SGML systems to be eval-
uated by such suites, and those who examine an
SGML system's performance on a test suite as part
of the process of selecting an SGML tool.

In particular, this standard includes:

– criteria for the organization of test suites,
including naming conventions, documentation
conventions, and specification of applicable con-
crete syntaxes and features. Among other
advantages, these conventions facilitate any
non-SGML automatic processing that may be
convenient for the developers or the users of the
tests;

NOTE – An example of such non-SGML processing is
sorting tests by name.

– a standard form for describing test results
that makes clear what has been proven or dis-
proven by the tests;

– the specification of a Reference Application
for SGML Testing (RAST) that interprets all
markup to allow machine comparison of test
results for documents conforming to ISO 8879.
RAST indicates in a standard way when tags,
processing instructions, and data are recognized
by the parser, replacing references and process-
ing markup declarations and marked sections
appropriately. RAST tests information likely to be

passed by a general-purpose SGML parser to an
application but does not test additional informa-
tion that some parsers provide;

– the specification of a Reference Application
for Capacity Testing (RACT) that reports a vali-
dating parser's capacity calculations. An SGML
system that supports this application indicates its
ability to report capacity errors regardless of
whether it supports variant capacity sets;

– the specification of test procedures related to
SDIF data streams.

This standard applies to the testing only of aspects
of SGML implementation and usage for which
objective conformance criteria are defined in
ISO 8879.

NOTE – Among the aspects of an SGML system not
addressed by this standard are error recovery, phras-
ing of error messages, application results, and
documentation (including the system declaration).

2 Normative references

The following normative documents contain provi-
sions which, through reference in this text,
constitute provisions of this International Standard.
For dated references, subsequent amendments to,
or revisions of, any of these publications do not
apply. However, parties to agreements based on
this International Standard are encouraged to
investigate the possibility of applying the most
recent editions of the normative documents indi-

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

2 © ISO/IEC 2000 – All rights reserved

ISO/IEC 13673:2000(E)

cated below. For undated references, the latest
edition of the normative document referred to
applies. Members of ISO and IEC maintain
registers of currently valid International Standards.

ISO 646:1983, Information processing – ISO 7-bit
coded character set for information interchange

ISO 8879:1986, Information processing – Text and
office systems – Standard Generalized Markup
Language (SGML)

ISO 8879:1986/A1:1988, Information processing –
Text and office systems – Standard Generalized
Markup Language (SGML) Amendment 1

ISO 9069:1988, Information processing – SGML
support facilities – SGML Document Interchange
Format (SDIF)

3 Precedence of ISO 8879

Any discrepancy between any provision of this
standard and ISO 8879 should be resolved in
accordance with the latter. Furthermore, should
any future effective edition of ISO 8879 contradict
any provision of this standard, a test suite for the
future version will be considered to conform to this
standard only if the discrepancy is resolved in
accordance with the effective edition of ISO 8879.
In particular, the precedence of ISO 8879 applies
to the definitions in clause 4, the description of
RAST in clause 14, and the description of ESIS in
annex A.

Should there be any internal inconsistencies within
this standard between annex A and the remainder,
implementors of conforming test suites shall rely
on the provisions in annex A.

4 Definitions

NOTE – None of the terms defined below are used or
defined in ISO 8879. Should such definitions be
added to some future version of ISO 8879, the prece-
dence of ISO 8879 will apply in accordance with
clause 3.

4.1 anomalous test case: A test case that devi-
ates from some requirement of ordinary tests
because the tested SGML construct is incompati-
ble with that requirement.

4.2 application modules: Components of an
SGML system other than the parser and entity
manager.

4.3 effective edition: The current edition of a
standard including any amendments, addenda, or
other modifications.

4.4 Element Structure Information Set: Infor-
mation comprising the element structure that is
described by SGML markup (the element structure
information set is defined in annex A).

4.5 ESIS: Element Structure Information Set.

4.6 equivalent SGML documents: SGML doc-
uments that, when parsed with respect to identical
DTDs and LPDs, have an identical ESIS.

4.7 internal entity: An entity whose replacement
text appears in an entity declaration.

4.8 lexicographic order: An order in which dis-
tinct strings are arranged by comparing successive
letters. One string appears before another if it is a
prefix of the second, or if, according to the following
conventions, in the first position where they differ,
the character in the first string precedes the char-
acter in the second string. Printable characters
precede nonprintable characters. One printable
character precedes another if the ISO 646 charac-
ter number of the first is smaller than the ISO 646
character number of the second. In particular, the
space character precedes all other printable char-
acters and any other printable character precedes
a second one if the first precedes the second char-
acter in the list of printable characters given in
4.14. A nonprintable character precedes another if
its character number in the document character set
is smaller than the character number of the second
in the document character set.

NOTE – For strings consisting only of printable char-
acters, this order is independent of concrete syntax.

4.9 major SOO: A statement of objective for sev-
eral related tests in a test suite.

4.10 markup-sensitive SGML application: An
SGML application that can act on SGML markup
as well as element structure.

4.11 minor SOO: A statement of objective that
describes the particular principle of the SGML lan-
guage that distinguishes an individual member of a
group of related tests.

4.12 nonprintable character: A character that
is not a printable character (see 4.14).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

© ISO/IEC 2000 – All rights reserved 3

ISO/IEC 13673:2000(E)

4.13 ordinary test case: A test case that follows
the naming, organizing, and formatting conven-
tions itemized in this standard and identified as
requirements for ordinary tests (see anomalous
test case).

4.14 printable character: A character with
ISO 646 character number in the range 32 to 126
inclusive. These characters consist of the space
character and all the following:

! " # $ % & ' () * + , - . / 0 1 2

3 4 5 6 7 8 9 : ; < = > ? @ A B C D

E F G H I J K L M N O P Q R S T U V

W X Y Z [\] ^ _ ` a b c d e f g h

i j k l m n o p q r s t u v w x y z

{ | } ~

4.15 RACT: Reference Application for Capacity
Testing.

4.16 RAST: Reference Application for SGML
Testing.

4.17 Reference Application for Capacity
Testing: An SGML application that reports capac-
ity calculations (defined in clause 15).

4.18 Reference Application for SGML
Testing: An SGML application that reports ESIS
information (defined in clause 14).

4.19 SOO: Statement of objective.

4.20 statement of objective: A brief description
of the aspect of the SGML language explored in an
individual test case or a group of related tests.

4.21 structure-controlled SGML application:

An SGML application that operates only on ESIS
information and the “APPINFO” parameter of the
SGML declaration; a structure-controlled applica-
tion operates on the element structure described
by SGML markup, never on the markup itself.

4.22 test case (or test): An SGML document
included in a test suite.

4.23 tested system: An SGML system that is
evaluated by inspection of the results it produces
on the test cases of a test suite.

4.24 test suite: A documented collection of
SGML documents intended to exercise an SGML
system in order to indicate whether the system
conforms to the specifications of ISO 8879.

5 Use of SGML test suites

Because of the wide variation possible in SGML
systems, no single test suite is adequate for testing
how well all SGML systems conform to the require-
ments of ISO 8879. Some SGML systems produce
SGML documents, others process SGML docu-
ments to obtain various results, still others both
read and produce SGML documents. Some sys-
tems are restricted to documents with particular
document type declarations, others can process
arbitrary documents meeting the constraints of the
system declaration. A test suite intended for a
more general system contains test cases that can-
not be processed by a more restrictive system; a
test suite for a restrictive system does not ade-
quately explore the capabilities of a more general
one.

NOTE – An SGML test suite indicates whether the
modules of an SGML system that process SGML do
so according to the specifications of ISO 8879. Test-
ing a system's SGML capabilities does not indicate
whether it correctly performs a desired application in
other respects.

5.1 Comprehensive test suites

SGML test suites shall be comprehensive. A gen-
eral-purpose SGML test suite shall provide tests
that explore conformance to every required aspect
of the SGML language and to every aspect of sup-
ported optional features. Similarly, a test suite for a
particular application shall provide tests to explore
every aspect of the SGML language used in that
application.

NOTE – An application-specific test suite may not be
able to test all required constructs of SGML and can-
not indicate whether the underlying SGML parser
conforms to the requirements of ISO 8879 for such
constructs. For example, attributes cannot be tested if
an application does not happen to use any. Thus, a
test suite for such an application cannot predict con-
formance of attribute handling in an implementation of
another application built with the same parser.

This standard defines requirements for testing gen-
eral SGML systems. Test suites intended for more
restrictive environments may deviate from these
requirements only where the requirements are
incompatible with the system to be tested. For
example, the conventions for selecting generic
identifiers cannot be followed in a system restricted
to a document type declaration that uses other
conventions.

A test suite for a validating SGML system shall
include erroneous test cases to investigate com-
prehensively the system's ability to detect errors. A

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

4 © ISO/IEC 2000 – All rights reserved

ISO/IEC 13673:2000(E)

nonvalidating SGML system can be tested with
such a test suite, but its results on erroneous doc-
uments are not predictable.

5.2 The role of SGML in a tested system

The way a test suite is used depends on whether
the tested system processes existing SGML docu-
ments, or produces SGML documents.

5.2.1 Systems that read SGML

A system that acts upon existing SGML documents
is tested by examining the results it produces from
every test in a comprehensive test suite. However,
the variation in SGML systems means these
results may take any number of forms. As a result,
there is no unique method for determining whether
a tested system correctly processes a test case.

The remainder of this subsubclause discusses var-
ious methods for evaluating test suite results
produced by a system that processes SGML docu-
ments. Of these methods, RAST provides the most
information and should be used whenever
possible.

5.2.1.1 Evaluating with RAST

RAST (see clause 14) is a simple SGML applica-
tion designed to validate a parser's recognition of
the Element Structure Information Set (ESIS).
ESIS (see annex A) is the information exchanged
by a parser and other components of a program
that implements a structure-controlled application.
RAST reflects the ESIS of an SGML document with
a minimal amount of additional information in such
a way that the results it produces from two SGML
documents using the same concrete syntax will be
the same if and only if the two documents have the
same ESIS. An SGML system that supports RAST
is easily tested by machine comparison of RAST
results to known correct RAST output for every
document in a test suite.

NOTE – There is no requirement that an SGML sys-
tem support RAST. However, it should be easy to
implement RAST with any general-purpose SGML
system that provides a software-development envi-
ronment for building SGML applications.

5.2.1.2 Comparing with equivalent
documents

An SGML system that does not support RAST can
be tested to some extent through a structure-con-
trolled application with the following properties:

– The application is not restricted to one or
more specified document type definitions;

– The application's output is machine-readable
(for example, it is a computer file rather than
printed paper or sound). Such applications
include, for example, one that counts the number
of elements in a document or one that produces
a vocabulary list of the unique words that occur
within the content of a document.

The test procedure involves comparing the appli-
cation's output on sets of equivalent, but not
identical, SGML documents. Identical output must
be produced for such documents. This criterion
alone cannot demonstrate a system's conform-
ance to ISO 8879. For example, the criterion is
satisfied by a system that produces identical output
for all documents, equivalent or not. More informa-
tion is obtained if the application produces different
results for documents that are not equivalent. Note,
however, that the simple word-list application just
described does not meet this stricter constraint,
since there could be documents with very different
element structure that use the same vocabulary.

NOTE – Implementors of test suites that consist of
sets of equivalent documents should verify that mem-
bers of each set are indeed equivalent by confirming
that RAST produces the same output for every mem-
ber in the set.

5.2.1.3 Evaluation through error recognition

The correctness of a validating SGML parser can,
in large measure, be demonstrated if the parser
a) reports erroneous SGML documents to be
invalid and b) reports valid documents to be con-
forming. This type of testing can be done
regardless of how errors are reported (possibilities
include visual and auditory signals as well as error
messages). However, some aspects of SGML
parsing – for instance, significance of record ends
and correct interpretation of default attribute values
– do not affect whether the document is valid and
hence cannot be tested in this way. Comprehen-
sive testing of markup minimization in this manner
is also difficult. Furthermore, a system that reports
an erroneous document to be in error need not be
conforming; the system may have accepted the
erroneous construct and misinterpreted some cor-
rect markup.

5.2.1.4 Other forms of evaluation

Knowledge of particular applications can be used
to design system-specific methods of reporting all
or part of the ESIS information in a document. The
reported information is an indication of the con-
formance of the tested system's parser to
ISO 8879.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

© ISO/IEC 2000 – All rights reserved 5

ISO/IEC 13673:2000(E)

5.2.2 Systems that generate SGML

A system that produces SGML documents is
tested by processing representative output with a
system that reads SGML documents. A test suite
therefore consists of test cases that produce a
comprehensive collection of output documents.

NOTE – This procedure shows whether the tested
system produces conforming SGML documents from
the test cases; it provides no information about
whether the output is correct in other respects.

5.2.3 Systems that both read and produce
SGML

A system that both processes and generates
SGML documents can be tested separately as a
system that reads SGML and as one that produces
SGML. Depending on the relationship between the
input and output documents, a comparison of the
two may provide additional results. Although such
a comparison is application dependent, it may
reveal information about SGML conformance. One
form of comparison is testing whether input and
output are equivalent SGML documents (which
can be done by a character-by-character compari-
son of their RAST results). This comparison is
useful, for example, in testing a text editor that can
both import and export SGML documents. Such an
editor's SGML parsing can be tested by importing
each test in a test suite and immediately exporting
the unedited document; the result should be an
equivalent document. Similarly, a tool that replaces
a minimal SGML document with an equivalent one
using various forms of markup minimization should
produce output equivalent to its input. For some
applications, it may be useful to verify that input
and output are identical. Other forms of compari-
son depend on particular applications.

5.2.4 Systems that use SGML as an interme-
diate form

A system may use SGML even if both its original
input and final output have some other form. Such
a system creates an SGML document and then
processes it to obtain another result. Depending on
the implementation, it may be possible to test the
embedded SGML parser in another application.
Furthermore, if the intermediate SGML document
can be saved, the system can be evaluated as a
system that produces SGML. In other cases, sys-
tem-specific testing is required.

6 Test suite documentation

This clause describes information that shall be
included in the documentation that accompanies a
test suite. This information shall be available to all
potential and actual users of the test suite and shall
be repeated in any report generated after a system
is tested.

6.1 General documentation

The documentation shall include the following:

– one or more identifiers, such as ISO
8879:1986(E) or ISO 8879:1986/A1:1988(E),
indicating the effective edition of ISO 8879 used
in preparing the test suite;

– one or more identifiers, such as ISO/
IEC 13673:2000(E), indicating the effective edi-
tion of this standard used in preparing the test
suite and in any implementations of RAST and
RACT used to generate results of those applica-
tions provided with the test suite;

– the following statement, translated if the doc-
ument is not in English:

A test suite can indicate that an SGML system is
nonconforming by providing a test on which the
system fails. However, no test suite can prove
that an SGML system is fully conforming or
predict the results the system would obtain on
untested documents.

– the following statement, translated if the doc-
ument is not in English:

When a tested system produces results other
than those expected by a test suite, the
discrepancy may result from an error in either
the test suite or the tested SGML system.

– a description of the types of SGML system
that can be tested by the test suite. This descrip-
tion, for example, indicates whether the test suite
is restricted to a particular application. It also
identifies any provisions of this standard that
could not be observed – naming conventions
that are incompatible with an application's docu-
ment type declaration, for instance;

– indication of whether the test suite explores
validation as well as conformance of SGML doc-
uments; in other words, whether some test
cases are deliberately erroneous documents;

– description of the document character sets
used in the test suite in the syntax of the docu-

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

6 © ISO/IEC 2000 – All rights reserved

ISO/IEC 13673:2000(E)

ment character set parameter of the SGML
declaration, with descriptive comments, if
desired;

– a list of all optional SGML features
addressed by the test suite in the syntax of the
feature use parameter of the system declaration,
with descriptive comments, if desired;

– a list of all optional SGML features not cov-
ered by the test suite, with a statement that the
results do not predict the tested system's perfor-
mance on documents using these features. The
list is presented in the syntax of the feature use
parameter of the system declaration, with
descriptive comments, if desired;

– a description of the concrete syntaxes
included in the test suite in the syntax of the con-
crete syntax scope and concrete syntaxes
supported parameters of the system declaration,
with descriptive comments, if desired;

– a description of the capacity sets included in
the test suite in the syntax of the capacity set
parameter of the system declaration, with
descriptive comments, if desired;

– an indication of whether some test cases
include explicit SGML declarations or all test
cases have implied SGML declarations;

– indication of whether the test suite is accom-
panied by RAST results for individual tests and,
if so:

– the system declaration of the implementa-
tion of RAST used to create the results.
Descriptive comments may be added. The
system declaration shall not indicate that an
optional feature is supported unless the imple-
mentation is able to interpret all processing
instructions that direct RAST's processing of
that feature (see 14.6.13, 14.6.14, and
14.6.15).

NOTE – Ideally, the implementation of RAST should
support all character sets, variant concrete syntaxes,
optional features, and variant capacity sets addressed
in the test suite. Since such an implementation may
not be available when the test suite is constructed,
however, it is important that any discrepancies be fully
described.

If the test suite provides test cases for optional
features not supported by the implementation
of RAST, RAST results shall not be provided
for those particular tests;

– indication of whether the particular imple-

mentation of RAST that generated the results
is capable of producing the error indication,
#ERROR(see 14.6.2);

– indication of whether the test suite provides
RACT results for individual tests;

– the number of test cases in each category
listed in clause 13, as well as identification of any
new categories defined for this test suite, with
the number of test cases in each.

6.2 Test case documentation

The documentation shall also include a statement
of objective (SOO) for each test. The SOO
describes the primary aspect of the SGML lan-
guage described in the test case. SOOs are clear
and concise statements, which may be direct quo-
tations from ISO 8879, possibly from syntax
productions, notes, indented examples, or
annexes. A test's SOO appears as a comment
within the test case. Furthermore, the SOOs for all
tests in the test suite shall be listed in a separate
report. The SOO report allows an individual to
review the scope and some of the accuracy of the
test suite without inspecting the test cases them-
selves. The document shall include the name of
the test case corresponding to each SOO.

When a test suite includes variations of one princi-
ple, readability of the SOO documentation can be
increased by extracting the common principle into
a major SOO and the variations into minor SOOs.
The SOO comment in the test case then is the con-
catenation of the associated major and minor
SOOs. An example of a major SOO is “A prolog
can begin with other prolog.” Associated minor
SOOs might be:

– An other prolog can be a comment
declaration;

– An other prolog can be an s separator;

– An other prolog can be a processing
instruction.

6.3 Naming SOOs

Each SOO, including major and minor SOOs, shall
be given an eight-character name. Letters in SOO
names are always lowercase. Each SOO name
shall consist of a three-character unique identifier
followed by a five-character clause identifier.

The first character in the unique identifier is a letter.
If the letter is ‘g’, ‘p’, or ‘i’, than the test shall be a

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

© ISO/IEC 2000 – All rights reserved 7

ISO/IEC 13673:2000(E)

conforming or erroneous document according to
the following table:

Any other first letter may be used, but this standard
does not assign meaning to other letters.

NOTE – For example, implementors of large test
suites might define additional conventions when there
are more SOOs in one of the categories in the above
table than there are three-character combinations
beginning with a particular letter. Implementors might
also use different initial letters to avoid duplicating the
unique identifiers of an earlier test suite.

The second and third characters of the unique
identifiers may be letters or digits, and no signifi-
cance is attached to the choice of characters.

The clause identifier is a five-character code indi-
cating the clause in ISO 8879 defining the primary
aspect of SGML to be tested. Each character is a
letter or digit corresponding to a numeric value.
Digits represent themselves; the letter ‘a’ corre-
sponds to the number 10; ‘b’ corresponds to 11,
etc. The letter ‘z’ is used for all numbers over 34.
The first character identifies the clause, the second
character the subclause, the third the subsub-
clause, the fourth the subsubsubclause, and the
final digit the paragraph.

Clause headings are not counted for the purpose
of this numbering. All other text blocks whose
semantics require they be formatted starting at the
beginning of a line are considered to be para-
graphs for this purpose. For example, each syntax
production, note or paragraph within a note,
indented example, list item, and list heading is
counted as a separate paragraph.

For tests relevant to higher-order subdivisions in
ISO 8879, zeros are used for the lower-order
clause number. For example, a test of a document
with an erroneous prolog based on the second
paragraph of Clause 10.4.2 would be given a name
of the form pxxa4202 where “xx ”' represents two
arbitrary letters or digits.

The paragraph number may be left as 0, if the SOO
is not associated with a particular paragraph.

As mentioned in clause 6, a test suite identifies the
effective edition of ISO 8879 on which it is based.
This information is needed to interpret clause
identifiers.

When a test involves a construct defined in a fig-
ure, the first three characters in the clause identifier
are fig . (It is not expected that any future version
of ISO 8879 will add a subsubclause numbered
15.18.16, so these clause identifiers are effectively
unique.) The fourth character is the figure count
(using the 1–9, a–z numbering scheme just
described). The last digit identifies the row in the
figure, if relevant, and is otherwise 0.

NOTE – The assignment of clauses to SOOs is sub-
jective. For example, individuals may disagree
whether a test primarily investigates a system's han-
dling of an ATTLIST declaration or of an attribute
value.

6.4 Revising SOOs

As a test suite is revised over time, SOO names
shall remain stable. If a SOO is deleted, its name
may not be assigned to a new SOO. The text of the
SOO may be corrected, however. A single SOO
may be converted into a major SOO with several
variations, a major SOO may become a minor
SOO, and a minor SOO may become a major SOO
or a single SOO. Furthermore, the clause identifier
may be corrected. For example, the SOO author
may initially associate a SOO relating to attribute
values with the clause defining a relevant declara-
tion; in a revision, he may consider it more
accurate to identify the SOO with the clause that
deals with the specification of attribute values.

7 Types of tests

SOOs, and corresponding tests, fall into two main
(possibly overlapping) groups:

– Normative, those that test a system's adher-
ence to the SGML standard;

– Volume, those that test the quality of an
implementation.

The normative category can be further divided into
SOOs and tests that

– relate to a single construct of SGML;

– relate to a single combination of SGML
constructs.

SOOs for normative tests are often quotations, or
paraphrases of quotations, from ISO 8879.

The volume category can be further divided into
SOOs and tests that

First letter Identifies a test of a
g conforming (or “good”) document
p erroneous prolog
i erroneous document instance

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

8 © ISO/IEC 2000 – All rights reserved

ISO/IEC 13673:2000(E)

– exercise a tested system with variations of
normative tests;

– stretch a tested system's capabilities (e.g.,
exploring memory limits, maximum integer size
on a computer system, etc.).

Within these groups, ordinary tests are those that
conform to the naming, organization, and format-
ting requirements of this standard. Since these
requirements are compatible with, but more restric-
tive than, those of ISO 8879, it is conceivable that
an erroneous SGML system might correctly pro-
cess all ordinary tests but be unable to handle
other SGML documents. Therefore, to conform to
this standard, a test suite shall include at least one
anomalous test that deviates from each require-
ment for ordinary tests. An anomalous test shall
conform to all requirements for ordinary tests
except those, identified in its SOO, that it intention-
ally violates.

8 General requirements for individual
tests

All tests in a test suite shall meet the following
requirements:

– Tests are classified by the primary part of the
SGML language addressed. However, a com-
plete SGML document contains multiple
constructs (e.g., both a prolog and a document
instance). Tests can be grouped into overlapping
categories according to the constructs they test.
A standard definition of categories is provided in
clause 13. Comments in every test identify all
relevant categories;

– Tests are commented to identify closely
related tests in the test suite. For example, sup-
pose one test verifies that a name of maximum
length is accepted and another verifies that it is
an error if a name contains too many characters.
Comments within each test should mention the
other;

– Each test is identified as an erroneous SGML
document or as a conforming document;

– Some tests are designed to verify that a sys-
tem is not making a particular mistake. Such
tests are written so that a system that makes the
mistake is likely to interpret a conforming docu-
ment as nonconforming or a nonconforming
document as conforming;

– Insofar as possible, tests of nonconforming
documents contain at most one error;

– Some SGML implementations use separate
programs to process the prolog and the docu-
ment instance. For the convenience of
implementors of such systems, tests are classi-
fied by whether they exercise the prolog or the
document instance;

– Each test illustrates a single SOO, or a single
major SOO combined with a single minor SOO.
However, multiple instances of the designated
aspect of the language may appear in an individ-
ual test. For example, to illustrate that (with
appropriate naming rules) case is not significant
in generic identifiers, a single test may include
start-tags in which the same generic identifier is
entered in lowercase, uppercase, and mixed
upper- and lowercase;

NOTE – When a test is intended to illustrate some
conjunction of different SGML constructs, the combi-
nation is identified in the SOO. Thus, the test still
illustrates a single SOO.

– The size of a test is minimized to exclude
superfluous content; every construct used in the
test case is directly relevant to the principal
aspect of SGML being tested. This guideline is
not enforced to the extreme of sacrificing the
readability or comprehensibility of the test. For
example, since #PCDATAis defined as zero or
more characters, the minimal string satisfying
each instance of #PCDATAis the empty string.
Tests are more readable, however, if #PCDATA
is realized with a short phrase relevant to the
test's SOO.

NOTE – Adherence to these guidelines is often sub-
jective. For example, individuals may disagree about
whether a particular pair of tests should be com-
mented as being closely related.

9 Test case naming conventions

Each ordinary test has an eight-character name,
possibly with a three-character suffix. The test
name is the same as the name of the correspond-
ing SOO, as defined in 6.3 (the name of the minor
SOO, if the test is based on a major and minor
SOO pair). Suffixes are added to test names when
a test suite includes equivalent documents. All
equivalent documents have the same eight-char-
acter name and different, arbitrarily assigned
suffixes.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

© ISO/IEC 2000 – All rights reserved 9

ISO/IEC 13673:2000(E)

NOTE – On computer systems where files are identi-
fied by a name and an extension, it may be convenient
to place each test case in a separate file whose name
is the same as the test name and whose extension is
the same as the suffix.

10 Requirements for SGML names and
literals

It may be efficient in some environments to com-
bine multiple tests into a single document.
Therefore, names shall be unique to each test.
Names shall also indicate the function of the
named object. Similarly, literals shall indicate their
function. To meet these goals, SGML names and
literals in ordinary tests are selected as follows:

– Each name or literal other than a number or
number token begins with the three-character
unique identifier of the test case name;

– Only lowercase letters are used in names
other than reserved names and in literals;

– The test's document element has the same
name as the test;

– In literals and in names other than that of the
document element, the unique identifier is fol-
lowed by a hyphen, a one-letter code to illustrate
the construct being named, and a sequence
number within a test. The one-letter codes are

a – Attribute;

e – Entity;

g – Generic identifier;

i – Unique identifier;

l – Link set;

m– Minimum literal;

n – Notation;

s – Short reference map;

t – Link type;

v – Value of attribute;

x – Miscellaneous.

The sequence numbers following these codes
are assigned in the order in which they occur in
the test case and are unique to each code.
Leading zeros are prefixed to the sequence
numbers if necessary so that, within a test, each
number following a given code has the same
length.

Thus, a test case named p7b94402 that uses two
entities, one attribute, and ten values would name
the entities p7b-e1 and p7b-e2 , the attribute
p7b-a1 , and the values p7b-v01 through p7b-
v10 .

NOTE – Although RAST produces attribute informa-
tion in lexicographic order, the naming conventions
ensure that lexicographic order usually corresponds
to the order in which attributes appear in the corre-
sponding ATTLIST declaration. The coincidence of
the lexicographic and declaration orders simplifies
manual comparison of an ordinary test and its RAST
output.

The naming conventions are not applied to anom-
alous tests that are incompatible with them.

NOTE – For example, this naming scheme cannot be
used to test:

– Name tokens that are not names;

– A parameter entity with the same name as a
general entity;

– Name-length violations; and

– A variant concrete syntax’s use in a name of
name characters that are not name characters in
the reference concrete syntax.

11 Conventions for testing string length

Ordinary tests dependent on the length of strings
place the current string length as a decimal integer
within the string in the following locations:

– immediately following each RS character;

– every ten characters within the string;

– immediately before each RE character.

RS and RE characters are included in the charac-
ter count. The last digit of the string length appears
in the indicated position.

NOTE – For example, if the string is more than ten
characters long, the digit ‘1’ appears as the ninth char-
acter and ‘0’ as the tenth.

The ten-character marker is omitted if the charac-
ters to represent it overlap the beginning- or end-
of-record marker, or abut the preceding ten-char-
acter marker with no intervening spaces. Note that
these requirements apply to the SGML source doc-
ument rather than the RAST result.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

10 © ISO/IEC 2000 – All rights reserved

ISO/IEC 13673:2000(E)

Figure 1 gives an example of the string-length con-
vention. It shows a processing instruction that is
240 characters long, including the RS character at
the beginning, and the RE character at the end, of
each line.

12 Source document formatting
conventions

Conventions for indentation, use of blank records
and comments (especially at the beginning and
end of each test) promote readability of tests and
human scanning of information and also simplify
tasks that the user of a test suite may wish to auto-
mate. For example, a fixed position for the generic
identifier of the document element makes it easy to
extract.

Therefore, ordinary tests follow the general pattern
given below:

<!DOCTYPE name [
<!--Categories:
category1
category2

.

.

.
-->
<!--
short description of test, including its SOO
-->
declaration1
declaration2

.

.

.
]>
document instance

An example of such a test is the following:

<!DOCTYPE g5i79413 [
<!--Categories:
attribute
-->
<!--
An empty attribute value literal can
be specified if the type of the
attribute value is CDATA (Clause
7.9.4.1, Paragraph 3).
-->
<!ELEMENT g5i7941 3 - - ANY>
<!ELEMENT g5i-g 1 - - (#PCDATA)>
<!ATTLIST g5i-g1

g5i-a1 CDATA #IMPLIED>
]>
<g5i79413>
<g5i-g1 g5i-a1="">
</g5i-g1>
</g5i79413>

In particular:

– The first several records of each ordinary test
contain, in order, each starting in the first charac-
ter of the record:

a) the start of the document type declaration,
through the dso ;

b) the beginning of a comment declaration,
introduced by the word “Categories:”;

c) one or more records each containing a
single category name as described in
clause 13 (in uppercase, lowercase, or a
mixture);

d) the closing delimiters for the comment
declaration;

<?
3....10........20........30........40........50........60
64....70........80........90.......100.......110.......120
125..130.......140.......150.......160.......170.......180
185..190.......200.......210.......220.......230.......240>

Figure 1 - A 240-character processing instruction

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

© ISO/IEC 2000 – All rights reserved 11

ISO/IEC 13673:2000(E)

e) the opening delimiter for a second
comment declaration;

f) one or more lines containing a brief
description of the test. This description begins
with the test's SOO, including the associated
clause and paragraph numbers. The SOO
may be followed by additional text explaining
how the elements, data, and other constructs
within the test support the principle described
by the SOO.

g) the closing delimiters for the comment
declaration;

h) one or more records containing the
document type declaration subset, composed
of several declarations;

i) the closing delimiters for the document
type declaration;

j) the document element begins in the next
record.

– There are no spaces or blank records at the
beginning or end of a test;

– Each test ends with a record end;

– In markup declarations, ps+ in the syntax
productions of ISO 8879 is usually realized by a
single SPACE, or by a comment with a single
SPACE on each side. To avoid a record longer
than 60 characters, such a SPACE can be
replaced by an RE, and successive records
within a single declaration may be indented.
Other than an RE that separates two declara-
tions, nothing is inserted in an ordinary test for a
ps� or ds� in a production of ISO 8879, unless a
separator is required;

– Each markup declaration begins in the first
character of a new record.

To facilitate processing on multiple computer sys-
tems, an additional formatting requirement for
ordinary tests is that records are limited to 60
characters.

Anomalous tests that deviate from the require-
ments for ordinary tests are required when
necessary to test a particular aspect of SGML. For
example, a comprehensive test suite must contain
at least one test in which a markup declaration
begins elsewhere than the first character of a
record.

13 Test categories

As mentioned in clause 12, tests are classified by
category. Some categories are listed below, along
with an indication of whether they refer to con-
structs that conforming systems must support or to
optional constructs. A particular test suite may
define its own categories in addition to those listed
here:

ambiguous content model (optional)
anomalous test (required)
attribute (required)
capacity (required)
character data (required)
character reference (required)
character set (optional)
comment (required)
CONCUR(optional)
content model (required)
data tag (optional)
default entity (required)
delimiter-in-context (required)
document instance (required)
element (required)
exception (required)
explicit link (optional)
external identifier (required)
FORMAL(optional)
general entity (required)
implicit link (optional)
marked section (required)
markup declaration (required)
markup minimization (optional)
multicode syntax (optional)
non-SGML character (optional)
non-SGML data entity (required)
notation (required)
OMITTAG(optional)
optional report (optional)
parameter entity (required)
processing instruction (required)
prolog (required)
quantity (required)
rank (optional)
record boundary (required)
replaceable character data (required)
required or optional status of ele-

ment (optional)
specific character data (required)
SDIF (optional)
separator (required)
SGML declaration (optional)
short reference (optional)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

12 © ISO/IEC 2000 – All rights reserved

ISO/IEC 13673:2000(E)

SHORTTAG(optional)
simple link (optional)
SUBDOC(optional)
tag (required)
unique ID (required)
variant concrete syntax (optional)

14 The Reference Application for SGML
Testing (RAST)

This clause defines RAST.

NOTES

1 As discussed in clause 3, conflicts between the
definition of RAST and ISO 8879 are resolved
according to ISO 8879, and conflicts between the
definitions of RAST and ESIS are resolved according
to ESIS.

2 The result of applying RAST to a particular docu-
ment is itself neither an SGML document nor an
interchange format. Its sole purpose is to indicate
whether a document was parsed correctly.

3 RAST produces identical results from variations
of an SGML document that are equivalent according
to the provisions of ISO 8879. For example, RAST
generates the same output for two SGML documents
that are identical except for one or more of the follow-
ing variations:

– The attribute specifications within a start-tag
appear in different orders;

– One document includes a start-tag with an
attribute specification in which the attribute value
specification happens to be the same as the
default value; the other document omits this
attribute specification;

– One document includes an RE that is ignored
according to the provisions of ISO 8879; the
other document omits this RE;

– One document uses omitted tag minimiza-
tion; the other does not;

– One document uses short references; the
other does not.

The above list is not exhaustive.

14.1 Concrete syntax of the tested
document

RAST was designed to produce human-readable
results from SGML documents that use the core
concrete syntax, the reference concrete syntax, or
some variant concrete syntax that differs from the
reference concrete syntax only in its choice of
short-reference delimiters.

RAST can also process documents that use other
concrete syntaxes. However, for some syntaxes,
such as those where the characters ‘/ ’ and ‘&’ are
used as name-start characters, the result may be
difficult for humans to interpret. The result is suit-
able, however, for machine comparison.

14.2 System identifiers

There is one way in which tests prepared for use
with RAST may vary from system to system. Sys-
tem identifiers are interpreted in a system-specific
fashion, and a RAST implementation need not con-
trol this interpretation. As a consequence, system
identifiers in tests may have to be changed manu-
ally from system to system, and the RAST result
may legitimately differ in the displayed values of
system identifiers.

Two ways of minimizing the effect of this problem
exist:

– minimizing the number of tests incorporating
system identifiers;

– selecting system identifiers likely to be
acceptable on a wide range of computer
systems.

NOTE – Many computer systems accept file names of
up to eight letters or digits followed by a period and a
three-letter extension.

14.3 Processing instructions that direct
RAST

RAST operates on information exchanged
between an SGML parser and the rest of an SGML
system. Annex A lists the information that moves in
each direction. When information flows to the
parser from other components, RAST determines
the information content from the system data of
certain processing instructions. These processing
instructions are easily recognized because their
system data always begin with the characters
rast .

In particular, RAST uses processing instructions to
determine which document type declarations and
which link type declarations are active, to select
link rules, and to determine whether to parse
SGML subdocument entities. The format and inter-
pretation of these processing instructions are given
in 14.6.13, 14.6.14 and 14.6.15. The format is
defined in productions using the same notation as
that used in 14.6 to define RAST. To avoid confu-
sion, productions for processing instructions are
identified by letters instead of the numbers that
label the productions defining the RAST result.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

© ISO/IEC 2000 – All rights reserved 13

ISO/IEC 13673:2000(E)

14.4 Requirements for implementing RAST

An SGML system that implements RAST needs
certain capabilities beyond those required by
ISO 8879. In particular, such a system shall be
able to:

– produce the RAST result in a machine-read-
able form;

– sort strings in lexicographic order;

– interpret and act on the processing instruc-
tions defined in 14.6.13, 14.6.14 and 14.6.15, in
order to test certain optional features.

Furthermore, the RAST result is expressed in a
system-dependent character set. All characters
mentioned in the definition of the RAST result in
14.6.2 appear in delimiter strings in the reference
concrete syntax, are name characters in the refer-
ence concrete syntax, appear in the document
input to RAST, or are uppercase counterparts of
lowercase letters in the input document.

14.5 Notation

The RAST result is described formally in a variation
of the production notation found in ISO 8879. The
equals sign in each production is preceded by a
square-brackets enclosed list of the productions
that use the syntactic variable being defined. In
addition, each syntactic variable after the equals
sign is followed by the number of the production
that defines it, also enclosed in square brackets.

The terminals of this notation are listed below:

– Name, A name as defined by the concrete
syntax of the parsed document (shown in the
style of a “terminal variable,” even though it is not
a character class)

NOTE – If the concrete syntax permits, a Name may
contain nonprintable characters.

– Data Character , A printable character;

– LE, The system representation of the end of
an output line. The LE may in fact be the same
character that is used in input as the RE.

NOTE – Line ends must be represented in a system-
dependent manner in order to allow the RAST repre-
sentation to be easily examined and manipulated by
humans.

The processing instructions that direct RAST’s pro-
cessing of optional SGML features as described in
14.3 use the additional terminal:

– String , a sequence of SGML characters.

14.6 Syntax of the RAST result

This subclause defines RAST through a formal
description of its result.

RAST generates one or more lines for each com-
ponent of a document's structure. Lines
representing data are clearly distinguishable from
lines representing markup, and each type of
markup is distinct. The presence of an LE at the
end of each item of markup means that each item
of markup and each piece of data starts on a new
line.

14.6.1 Uppercase and lowercase letters in
the RAST result

RAST outputs many names and literals from its
input document. Clause 10 requires many letters in
names and literals in test cases to be lowercase. In
contexts in which ISO 8879 mandates substitution
of the uppercase counterpart for a lowercase letter,
RAST outputs the uppercase form.

NOTE – The requirements of clause 10 and upper-
case substitution allow RAST to test interpretation of
SGML naming rules.

14.6.2 The RAST result

[1] RAST result [11]=
(processing instruction data[18]�,
((active link[26]�,
base document element[2]) |
concurrent document element[33]+),
processing instruction data[18]�) |
((“#ERROR” | “#RAST-PI-ERROR”), LE)

RAST produces the single word #ERRORif the
parsed document is not a valid SGML document.
An implementation of RAST within a conforming
SGML system that is not a validating SGML sys-
tem need not be able to produce the error
indication. An implementation of RAST that inter-
prets the processing instructions defined in
14.6.13, 14.6.14 and 14.6.15 produces #RAST-
PI-ERROR if a processing instruction with system
data beginning rast does not meet the require-
ments of one of those three subsubclauses.

NOTES

1 An implementation of RAST may need to discard
a partial output file to produce either error indication.

2 RAST generates #RAST-PI-ERROR when it ex-
pects a processing instruction that was not provided.

3 #RAST-PI-ERROR indicates an error in a test
case or in an implementation of RAST. It should never
appear in the RAST results provided by a test suite.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

14 © ISO/IEC 2000 – All rights reserved

ISO/IEC 13673:2000(E)

RAST uses processing instruction data to show the
system data of all processing instructions that
occur in a document, in the order in which the pro-
cessing instructions appear. It reports processing
instructions that occur in the prolog prior to gener-
ating any active link, base document element, or
concurrent document element. Similarly, it reports
processing instructions that appear at the end of
the SGML document after it finishes the base doc-
ument element or the last concurrent document
element. All other processing instructions are
reported within the base document element or a
concurrent document element (a single processing
instruction may be reported within more than one
concurrent document element).

RAST produces at least one concurrent document
element when one or more active document types
are identified. Otherwise, it produces a base docu-
ment element, possibly preceded by one or more
active link specifications. RAST's use of active link
is explained in 14.6.14; that of concurrent docu-
ment element in 14.6.15.

14.6.3 Elements

[2] base document element [1]=
document element[3]

[3] document element [2]= simple link
information[28]�, parsed element[4]

[4] parsed element [3, 5, 33]= element start[6],
parsed content[5]�, element end[7]

[5] parsed content [4]=
external entity[17] | parsed element[4] |
processing instruction data[18] |
data line[20] | internal sdata entity[19] |
link set information[30]

[6] element start [4]= “[”, Name,
(LE, ((attribute information[8]+,
link information[29]?) |
link information[29]))?,
“] ”, LE

[7] element end [4]= “[/ ”, Name, (LE, link set
information[30])?, “] ”, LE

Each element in an SGML document is repre-
sented in the RAST result by a parsed element.
The document element, all proper subelements,
and all included elements are represented in the
same manner. This representation includes both
an element start and an element end, even if the
element is required to be entered without an end-

tag because it has declared content EMPTYor has
a specified content-reference attribute.

The Name in the element start and element end
surrounding the (possibly empty) parsed content of
an element is the generic identifier of the element
being represented. The closing bracket ending an
element end always appears on the same line as
the element's name. The closing bracket ending an
element start appears on a line by itself unless the
element start has no attribute information and no
link information.

RAST represents every item of content with parsed
content. It reports items of parsed content in the
same order as the corresponding information
appears in the parsed document.

14.6.4 Attributes

RAST reports attribute information for each
attribute in the element's ATTLIST declaration.
RAST reports attributes in the lexicographic order
of the attribute names. This order is not necessarily
the order in which the attributes are specified in the
document instance, but is ordinarily the order in
which they appear in the ATTLIST declaration
(see clause 10).

[8] attribute information [6, 12, 27, 28, 31, 32]=
Name, “=”, LE, ((“#IMPLIED ”, LE) |
((markup data[21] | internal sdata
entity[19])�, (external id information[14] |
entity information[9]+)?))

The Name in an item of attribute information is that
of the attribute for which information is being given.

For unspecified impliable attributes, including
unspecified content reference attributes, the
attribute information is #IMPLIED . Otherwise, the
value is represented by zero or more instances of
markup data and internal sdata entity. The latter
can appear only in the representation of character
data attribute values. In all other respects, the val-
ues of all types of attributes appear the same.

Each notation attribute value that appears in the
RAST result is followed immediately by the exter-
nal id information for the notation.

Each value for a general entity name attribute or a
general entity name list attribute is followed by the
entity information for each of the entity names that
appear in the attribute value. Where there is more
than one entity name, the entity information is
given for the different entity names in the same

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

© ISO/IEC 2000 – All rights reserved 15

ISO/IEC 13673:2000(E)

order as the entity names appear in the attribute
value.

NOTE – The attribute value is displayed as recog-
nized by an SGML parser – after entity expansion and,
where appropriate, removal of extra spaces and case
shifting of letters. In attribute values that consist of two
or more names, name tokens, numbers, number
tokens, entity names or ID references, consecutive
tokens are separated by one SPACE.

14.6.5 Entity information

[9] entity information [8]=
(external entity information[10] |
internal entity information[13]),
“#END-ENTITY”, LE

[10] external entity information [9, 17]=
(“#SUBDOC”, LE, external id
information[14], parsed
subdocument[11]?) |
(“#CDATA-EXTERNAL”, LE,
entity information details[12]) |
(“#SDATA-EXTERNAL”, LE,
entity information details[12]) |
(“#NDATA-EXTERNAL”, LE,
entity information details[12])

[11] parsed subdocument [10]=
“#PARSED-SUBDOCUMENT“, LE, RAST
result[1]

[12] entity information details [10]=
external id information[14],
“#NOTATION=”, Name, LE, external id
information[14], attribute information[8]

[13] internal entity information [9]=
(“#CDATA-INTERNAL”, LE,
markup data[21]) |
(“#SDATA-INTERNAL”, LE, markup
data[21]�)

Whether external entity information includes a
parsed subdocument is discussed in 14.6.13.

In entity information details, the first external id
information is that declared for the entity, and the
second is that declared for its notation. RAST
reports this information both when the entity is ref-
erenced in content and when the entity's name
appears in the value of a general entity name
attribute or a general entity name list attribute.

RAST reports attribute information for each
attribute declared for the associated notation. As
with start-tag attributes, data attributes are dis-
played in lexicographic order by attribute name.

14.6.6 External identifiers

[14] external id information [8, 10, 12]=
(public identifier information[15],
system identifier information[16]?) |
system identifier information[16] |
(“#SYSTEM”, LE, “#NONE”, LE))

[15] public identifier information [14]=
“#PUBLIC”, LE, (markup
data[21]+ | (“#EMPTY”, LE))

[16] system identifier information [14]=
“#SYSTEM”, LE, (markup data[21]+ |
(“#EMPTY”, LE))?

RAST generates public identifier information when
it reports an external identifier that has a public
identifier. If the external identifier also has a system
identifier, RAST also generates system identifier
information. When reporting an external identifier
that does not have a public identifier, RAST gener-
ates system identifier information. In both public
identifier information and system identifier informa-
tion, #EMPTY indicates the empty literal. RAST
uses #NONEwithin system identifier information to
indicate that an external identifier has neither a
public identifier nor a system identifier (that is, that
the external identifier consists solely of the
reserved name SYSTEM).

NOTES

1 RAST displays the text of public and system
identifiers as normalized by an SGML parser. For
example, extra spaces are removed from public
identifiers.

2 RAST reports the public and system identifiers for
notations and external data entities and does not
reflect any resolution the entity manager makes of
these identifiers. No meaningful resolution of an exter-
nal data entity is needed if an SGML document will
never be processed by an application other than
RAST, as is the case for documents intended only for
testing SGML parsers.

14.6.7 External entities

[17] external entity [5]= “[& ”, Name, LE,
external entity information[10], “] ”, LE

The Name in an external entity is the name of the
referenced general entity.

The closing bracket ending an external entity
always appears on a line by itself.

14.6.8 Processing instructions

[18] processing instruction data [1, 5]= “[? ”,
(LE, data line[20]+)?, “] ”, LE

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

16 © ISO/IEC 2000 – All rights reserved

ISO/IEC 13673:2000(E)

The data lines in processing instruction data con-
tain the text of a processing instruction recognized
by the SGML parser.

The closing bracket ending processing instruction
data appears on a line by itself unless the process-
ing instruction being represented contained no
text.

NOTE – RAST produces processing instruction data
even for those processing instructions, defined in
14.6.13, 14.6.14.1, and 14.6.15, that it interprets to
determine processing of SUBDOC, LINK and CONCUR
features.

14.6.9 Data

[19] internal sdata entity [5, 8]= “#SDATA-TEXT”,
LE, markup data[21]�, “#END-SDATA”, LE

[20] data line [5, 18]= (“| ”, Data Character +, “| ”,
LE) | special character[22]

[21] markup data [8, 13, 15, 16, 19]=
(“! ”, Data Character +, “! ”, LE) |
special character[22]

[22] special character [20, 21]= (“#RS”, LE) |
(“#RE”, LE) | (“#TAB”, LE) |
(“#”, character number[23], LE)

[23] character number [22]=
nonnegative integer[24]

[24] nonnegative integer [23, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51]=
“0” | (non-zero digit[25],
(“0” | non-zero digit[25])�)

[25] non-zero digit [24]= “1” | “2” | “3” | “4” | “5” |
“6” | “7” | “8” | “9”

A number that is used as a character number is a
decimal number, with no extra leading zeros, that
represents a character.

14.6.10 Uniform display of data

RAST displays all the following data values in a
uniform manner:

– #PCDATAcontent;

– processing instructions;

– attribute values;

– the expansion of specific-character data
entities;

– public and system identifiers.

All the above values are surrounded by exclama-
tion marks except for #PCDATA content and
processing instructions, which are surrounded by
vertical bars. The only differences are the limita-
tions imposed by ISO 8879 on the data that may
appear in each context. For example, public identi-
fiers may not contain record-ends.

14.6.11 Internal SDATA entities

An internal sdata entity in #PCDATAor a character
data attribute value need not contain any charac-
ters. If multiple adjacent specific character data
entity references occur, RAST produces an inter-
nal sdata entity for each reference.

NOTES

1 The text of a specific character data entity is
represented differently when the entity is referenced in
content than when the entity's name appears in the
value of a general entity name or general entity name
list attribute. In the first case, the text is surrounded by
lines containing #SDATA-TEXT and #END-SDATA,
and in the second #SDATA-INTERNAL and
#END-ENTITY.

2 References to SDATAentities can occur in SGML
documents in contexts not reflected in ESIS and
therefore not reported by RAST, for example, in an
attribute value literal of an attribute whose declared
value is other than CDATA.

14.6.12 Data characters

RAST shows data characters as follows:

– A printable character always appears as a
Data Character . The character code that is used
to represent the letter ‘A’, for instance, is always
displayed as ‘A’, even in specific character data,
where it may not represent the letter ‘A’;

– The character codes that are used to repre-
sent record-start, record-end, and tab always
appear as #RS, #RE, and #TAB, respectively, on
separate lines, even in specific character data.
The tab character is reported as #TAB regard-
less of whether it is declared in the SGML
declaration to be a function character.

NOTE – Since, unlike other data characters, these
representations are not surrounded by vertical bars or
exclamation marks, the occurrence of one of these
characters is distinct from a sequence of data charac-
ters that happens to spell one of these codes;

– All other characters are represented by a
character number.

NOTE – The above requirements pertain only to data
characters. All characters are represented by them-
selves within a Name. In particular, while RAST
represents nonprintable characters other than record-
start, record-end, and tab by character numbers when

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

© ISO/IEC 2000 – All rights reserved 17

ISO/IEC 13673:2000(E)

they occur as data characters, it outputs such charac-
ters directly when they occur in a Name.

RAST never produces more than 60 Data Charac-
ters on a single output line. A sequence of more
than 60 consecutive Data Character s is divided
into several lines, each, except possibly the last,
containing exactly 60 Data Character s (plus what-
ever other characters are required on the line). In
particular, RAST produces multiple instances of
data line or markup data when more than 60 con-
secutive Data Character s occur.

Every line of data contains some data characters;
that is, RAST does not generate a data line when
an element's content is empty or the value of a
character data attribute has no characters.

NOTE – Exclamation marks rather than vertical bars
are used to delimit data that appear inside markup.
This convention, which applies to attribute values,
specific character data entities, and system and public
identifiers, makes the distinction between data within
markup and other data clear to human readers of the
RAST result.

14.6.13 SGML subdocument entities 1)

[a] parse subdocument = “rast-parse-subdoc: ”,
(“yes” | “no”)

A parse subdocument processing instruction indi-
cates whether or not a following external entity
information for an SGML subdocument entity
includes a parsed subdocument. When RAST
encounters a parse subdocument processing
instruction, it adds it to the end of a list of saved
parsed subdocument processing instructions.
When a reference to an SGML subdocument entity
occurs, or the name of an SGML subdocument
entity occurs as the value of a general entity name
attribute or a token in the value of a general entity
name list attribute, RAST removes the parse sub-
document processing instruction at the beginning
of the list. If the processing instruction specifies no ,
or if the list was empty, RAST does not output a
parsed subdocument in the entity’s external entity
information. If the processing instruction specifies
yes, RAST outputs a parsed subdocument.

SGML subdocument entity names in attribute val-
ues are processed in the order RAST reports them.
In particular, if an element has two general entity
name attributes and the values of both are names
of SGML subdocument entities, RAST uses the
first applicable parse subdocument processing

instruction to determine whether to report a parsed
subdocument for the value of the attribute whose
name lexicographically precedes the other. If the
value of a general entity name list attribute con-
tains multiple tokens that are names of SGML
subdocument entities, RAST applies parse sub-
document processing instructions to the tokens in
the order they appear in the attribute value.

If an SGML subdocument entity for which the appli-
cable processing instruction specifies yes is not a
valid SGML document, RAST outputs #ERRORas
the result of the entire document; in other words,
RAST does not output the error indication simply
as a parsed subdocument for the invalid subdocu-
ment. Otherwise, if such an entity contains a
processing instruction with system data beginning
rast that does not meet the requirements of this
subsubclause or of 14.6.14.1 or 14.6.15, RAST
outputs #RAST-PI-ERROR as the result of the
entire document.

14.6.14 LINK

This subsubclause describes how RAST reports
the optional link features of SGML.

14.6.14.1 Processing instructions used with
link features

[b] active lpd = “rast-active-lpd: ”, Name,
(“, ”, Name)�

[c] link rule selection = “rast-link-rule: ”,
String

RAST interprets the first active lpd or active dtd
(see 14.6.15) processing instruction to appear in
the document. Each Name in an active lpd pro-
cessing instruction is that of a link type declaration
to be made active. If the naming rules of the con-
crete syntax specify uppercase substitution for
general names, all letters in the Name must appear
in uppercase.

NOTE – When the naming rules specify uppercase
substitution, a Name that appears with some lower-
case letters in a link type declaration must appear with
all uppercase letters in a processing instruction. This
requirement on processing instructions allows RAST
to process tests involving the optional link features
regardless of whether letters in a link type name
appear in uppercase or lowercase. Without it, an
implementation of RAST would need access to the
naming rules of the concrete syntax to investigate an
SGML system’s support of the uppercase substitution
specified in ISO 8879. Since the naming rules are not

1) Recall from 14.3 that productions for processing instructions that occur within test cases are identified by letters to
distinguish them from the productions identified by numbers that define the RAST result.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

18 © ISO/IEC 2000 – All rights reserved

ISO/IEC 13673:2000(E)

included in ESIS, the above requirement on process-
ing instructions increases the feasibility of
implementing RAST in any particular ESIS-based
SGML system.

The following conditions are errors that cause
RAST to output #RAST-PI-ERROR as the result of
the entire document:

– The processing instruction appears after the
start of the base document type declaration;

– A Name in the active lpd is not the link type
name of a link type declaration in the prolog;

– The same string is used as more than one
Name in the active lpd;

– The processing instruction lists more Names
than the SGML declaration permits to be active;

– The source document type name in an
explicit or implicit link specification is not that of
the base document type declaration.

A link rule selection appears in the document
instance. It specifies the value of a link attribute to
use for selecting a link rule when the next element
starts. In particular, RAST selects a link rule that
has at least one attribute whose interpreted and, if
the attribute is not character data, tokenized value
is the String in the link rule selection.

A sequence of adjacent link rule selections speci-
fies link attributes for successive following
elements. Such a sequence is useful when a test
case involves a sequence of omitted start-tags.

The following conditions are errors that cause
RAST to output #RAST-PI-ERROR as the result of
the entire document:

– No link rule selection is given prior to an ele-
ment with more than one applicable link rule;

– More than one rule, or none, have at least
one attribute whose interpreted, tokenized value
is String .

14.6.14.2 Active links

[26] active link [1]= “#ACTIVE-LINK= ”, Name,
LE, (“#INITIAL ”, LE,
result element specification[27]+)?,
“#END-ACTIVE-LINK ”, LE

[27] result element specification [26, 30]= “[”,
Name, LE, attribute information[8]+, “] ”,
LE

RAST generates an active link for each active link
type declaration. The Name in an active link is that

of an active link type declaration. The Name in a
result element specification is the generic identifier
of the result element. If present, #INITIAL intro-
duces the result element specifications of link rules
whose source element specification is implied in
the initial link set. If there is more than one active
link, they appear in the same order as the link
names appear in the active lpd processing instruc-
tion; the result element specifications appear in the
lexicographic order of the Names.

14.6.14.3 Simple link information

[28] simple link information [3]=
“#SIMPLE-LINK= ”, Name, LE,
attribute information[8]�,
“#END-SIMPLE-LINK ”, LE

RAST reports the link type name and attribute
information for each active simple link in simple link
information at the beginning of the document ele-
ment. The simple link information data appear in
the order the link type names appeared in the
active lpd processing instruction.

NOTE – RAST produces both an active link and sim-
ple link information for each active simple link.

14.6.14.4 Link Information

[29] link information [6]= (link set information[30],
link rule information[31]?) |
link rule information[31]

[30] link set information [29]=
“#LINK-SET-INFO ”, LE,
result element specification[27]+

[31] link rule information [29]= “#LINK-RULE ”,
LE, attribute information[8]�,
link result[32]?

[32] link result [31]= “#RESULT=”, ((Name, LE,
attribute information[8]�) |
(“#IMPLIED ”, LE))

If there is a current link set, RAST includes link
information within an element start. The link infor-
mation includes link set information if the current
link set has link rules whose source element spec-
ifications are implied. In this case, the rules are
listed in the lexicographic order of the Names in the
result element specifications.

If the started element is an associated element
type for a link rule in the current link set, RAST
reports link rule information. Any attribute informa-
tion reports the link attributes of the selected rule,
determined as described in 14.6.14.1.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

© ISO/IEC 2000 – All rights reserved 19

ISO/IEC 13673:2000(E)

A link result is included in the link rule information
if the active link is an explicit link. It gives the result
element specification with any result attributes.

RAST reports link set information within an ele-
ment end if the link set current after the element
has link rules whose source element specifications
are implied. RAST also reports link set information
after a link set use declaration if the specified link
set has link rules whose source element specifica-
tions are implied.

14.6.15 CONCUR

[d] active dtd = “rast-active-dtd: ”, Name,
(“, ”, Name)�

[33] concurrent document element [1]=
“#CONCUR=”, Name, LE,
parsed element[4]

RAST interprets the first active dtd or active lpd
(see 14.6.14) processing instruction to appear in
the document. Each Name in an active dtd pro-
cessing instruction is that of a document type
declaration to be made active. If the naming rules
of the concrete syntax specify uppercase substitu-
tion for general names, all letters in the Name must
appear in uppercase.The following conditions are
errors:

– The processing instruction appears after the
start of the base document type declaration;

– A Name in the active dtd is not the document
type name of a document type declaration in the
prolog;

– The SGML declaration does not allow all the
specified document type declarations to be
active.

If it uses an active dtd processing instruction,
instead of a base document element, RAST pro-
duces a concurrent document element for each
active document type declaration, in the order their
names appear in the active dtd processing instruc-
tion. The Name in each concurrent document
element is that of the associated active document
type declaration.

15 The Reference Application for Capa-
city Testing (RACT)

To test conformance to the capacity constraints of
SGML, a test suite can include one document that
reaches each capacity defined in ISO 8879 and

another that barely exceeds it. A validating parser
must correctly process the first document and
report an error on the second. However, such tests
are difficult to create using the reference capacity
set for two reasons. First, the limits in the reference
capacity set are large, and hence can only be
tested with large documents. Second, all the
capacities in the reference capacity set are the
same. It is therefore impossible to exceed any
other capacity without exceeding “TOTALCAP”.
There is no requirement that validating or conform-
ing SGML systems be able to define a variant
capacity set. RACT was therefore defined to pro-
vide an optional method of evaluating this aspect of
SGML parsing. RACT reports a validating parser's
capacity calculations for an SGML document. As
with RAST, there is no requirement that a parser
be able to support RACT.

RACT generates one line for each capacity, in the
order given in figure 5 of ISO 8879 (which defines
the reference capacity set). The line consists of the
capacity name, a single space, and the number of
capacity points used in that category in that
document.

RACT is formally defined below, in the same nota-
tion as that used in clause 14. Note that LE and
nonnegative integer are defined in clause 14. As in
ISO 8879, SPACE denotes the space character.

[34] RACT result = totalcap[35], entcap[36],
entchcap[37], elemcap[38], grpcap[39],
exgrpcap[40], exnmcap[41], attcap[42],
attchcap[43], avgrpcap[44], notcap[45],
notchcap[46], idcap[47], idrefcap[48],
mapcap[49], lksetcap[50], lknmcap[51]

[35] totalcap [34]= “TOTALCAP”, SPACE,
nonnegative integer[24], LE

[36] entcap [34]= “ENTCAP”, SPACE,
nonnegative integer[24], LE

[37] entchcap [34]= “ENTCHCAP”, SPACE,
nonnegative integer[24], LE

[38] elemcap [34]= “ELEMCAP”, SPACE,
nonnegative integer[24], LE

[39] grpcap [34]= “GRPCAP”, SPACE,
nonnegative integer[24], LE

[40] exgrpcap [34]= “EXGRPCAP”, SPACE,
nonnegative integer[24], LE

[41] exnmcap [34]= “EXNMCAP”, SPACE,
nonnegative integer[24], LE

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

20 © ISO/IEC 2000 – All rights reserved

ISO/IEC 13673:2000(E)

[42] attcap [34]= “ATTCAP”, SPACE,
nonnegative integer[24], LE

[43] attchcap [34]= “ATTCHCAP”, SPACE,
nonnegative integer[24], LE

[44] avgrpcap [34]= “AVGRPCAP”, SPACE,
nonnegative integer[24], LE

[45] notcap [34]= “NOTCAP”, SPACE,
nonnegative integer[24], LE

[46] notchcap [34]= “NOTCHCAP”, SPACE,
nonnegative integer[24], LE

[47] idcap [34]= “IDCAP”, SPACE,
nonnegative integer[24], LE

[48] idrefcap [34]= “IDREFCAP”, SPACE,
nonnegative integer[24], LE

[49] mapcap [34]= “MAPCAP”, SPACE,
nonnegative integer[24], LE

[50] lksetcap [34]= “LKSETCAP”, SPACE,
nonnegative integer[24], LE

[51] lknmcap [34]= “LKNMCAP”, SPACE,
nonnegative integer[24], LE

The value of each nonnegative integer is the num-
ber of points of the indicated capacity in the
document.

16 Test suite reports

This clause describes how to report the results of
testing an SGML system with a test suite. The
information described here shall be accompanied
by the documentation described in clause 6.

The performance of a particular SGML system on
a particular test suite cannot be adequately
reported by a single score or quantity. Any attempt
to do so might result in a low score for a conforming
system that does not implement an optional feature
repeatedly tested in the test suite. Furthermore, a
user of SGML who has no need for some required
construct may prefer to select a system that has
incorrectly implemented that required construct in
favor of a conforming system that does not provide
an optional feature the user plans to use. There-
fore, results of running a test suite are reported as
described below:

– The report lists the following for each cate-
gory of test:

– the number of tests in the category;

– if the tested system includes a validating
parser, the number of tests in the category that
the test suite and the tested system

– agree are conforming documents;

– agree are erroneous documents;

– do not agree to be conforming or
erroneous.

– if both the test suite and the tested system
support RAST, the number of tests in the cat-
egory that are conforming documents and for
which the RAST results produced by the
tested system

– are the same as those provided with the
test suite;

– differ from those provided with the test
suite;

– cannot be compared to those provided
with the test suite because only one of the
two implementations of RAST supports an
optional feature used in the test;

– if the test suite and the tested system both
support RACT, the number of tests in the cat-
egory for which the RACT result generated by
the tested system is

– the same as that provided with the test
suite;

– different from that provided with the test
suite;

– names of tests on which the test suite and
the tested system produce different results;

– a pairwise comparison of all test categories,
constructed as follows from the category com-
ments at the beginning of the tests. Each test
category is compared to every other category by
counting the number of tests in which both cate-
gories appear in the comments. This information
helps the reader of the report determine the sig-
nificance of the results. For example, suppose a
tested system has correctly implemented a con-
struct x, but misinterpreted a construct y. If all
tests of x happen to involve y as well, the high
count of tests in which the system and the test
suite produce different results might suggest a
problem in the implementation of x. Information
about the overlap of x and y tests, however,
informs the user that the problem might lie in the
latter category.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

© ISO/IEC 2000 – All rights reserved 21

ISO/IEC 13673:2000(E)

NOTE – In practice, a test suite may be developed in
conjunction with two or more implementations of
RAST. All should produce the same results for every
test. If this is not the case, and the implementor of the
test suite cannot determine which result is correct, all
variants shall be distributed with the test suite. The
documentation shall clearly identify tests for which
multiple results are provided.

17 Testing SDIF data streams

A test suite that evaluates a system's use of SDIF
shall be comprehensive. That is, a general purpose

SGML test suite that includes tests of SDIF shall
explore conformance to every aspect of ISO 9069.
A test suite restricted to a particular SGML applica-
tion that uses SDIF shall provide tests to explore
every aspect of SDIF relevant to that application.
Every general purpose SGML test suite that tests
SDIF shall test both the creation of an SDIF data
stream from separate entities and the separation of
an SDIF data stream into multiple entities. Applying
these operations in sequence should result in rec-
reation of the original entities, with the possible
exception that corresponding entity declarations
may have different system identifiers.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

ISO/IEC 13673:2000(E)

22 © ISO/IEC 2000 – All rights reserved

(Blank page)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

© ISO/IEC 2000 – All rights reserved 23

ISO/IEC 13673:2000(E)

Annex A
(normative)

The ISO 8879 Element Structure Information Set (ESIS)

This annex describes the Element Structure Infor-
mation Set (ESIS) which is implicit in ISO 8879.

NOTE – The provisions of clause 3 regarding conflict
with ISO 8879 apply.

There are two kinds of SGML application (and
therefore two kinds of conforming SGML
application):

a) A structure-controlled SGML application
operates only on the element structure that is
described by SGML markup, never on the
markup itself;

b) A markup-sensitive SGML application can
act on the actual SGML markup and can act on
element structure information as well. Examples
include SGML-sensitive editors and markup
validators.

The set of information that is acted upon by imple-
mentations of structure-controlled applications is
called the “element structure information set”
(ESIS). ESIS includes properties of the element
structure itself, plus other information. ESIS is
implicit in ISO 8879, but is not defined there explic-
itly. The purpose of this annex is to provide that
explicit definition.

ESIS is particularly significant for SGML conform-
ance testing because two SGML documents are
equivalent documents if, when they are parsed
with respect to identical DTDs and LPDs, their
ESIS is identical. All structure-controlled applica-
tions must therefore produce identical results for all
equivalent SGML documents. In contrast, not all
markup-sensitive applications will produce identi-
cal results from equivalent documents. (For
example, a program that prints comment declara-
tions or that counts the number of omitted end-
tags.)

ESIS information is exchanged between an SGML
parser and the rest of an SGML system that imple-
ments a structure-controlled application. Although
an implementation may choose to “wire in” some of
ESIS, such as the names of attributes, a structure-
controlled application need have no other knowl-
edge of the prolog than what ESIS provides.

A system implementing a structure-controlled
application is required to act only on ESIS informa-

tion and on the APPINFO parameter of the SGML
declaration.

NOTES

1 This requirement does not prohibit a parser from
providing the same interface to both structure-
controlled and markup-sensitive applications, which
could include non-ESIS information (e.g., the date),
and/or information that could be derived from ESIS
information (e.g., the list of open elements).

2 The documentation of a conforming SGML sys-
tem that supports user-developed structure-controlled
applications should make application developers
aware of this requirement. Such a system should facil-
itate conformance to this requirement by
distinguishing ESIS information from non-ESIS in its
interface to applications. Note 1 in 15.3.5 of ISO 8879
applies only to structure-controlled applications.

In the following description of ESIS, information is
identified as being available at a particular point in
the parsed document. This identification should not
be interpreted as a requirement that the informa-
tion actually be exchanged at that point – all or part
of it could have been exchanged at some other
point. Similarly, there is no constraint on the man-
ner (e.g., number of function calls) or format in
which the exchanges take place.

The ESIS description includes the information
associated with all of the SGML optional features.
When a given feature is not in use, corresponding
information is not present in the document. ESIS
information is transmitted from the parser to the
application unless otherwise indicated.

ESIS information applies to a single parsed docu-
ment instance. Therefore, if concurrent instances
are being parsed, the applicable document type
name must be identified. This requirement also
applies when parsing intermediate instances in a
chain of active links.

ESIS information consists of the identification of
the following occurrences, and the passing of the
indicated information for each:

a) Initialization

– The application must inform the SGML
parser of the active document types, the active
link types, or that parsing is to occur only with
respect to the base document type.

b) Start of document instance set

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

24 © ISO/IEC 2000 – All rights reserved

ISO/IEC 13673:2000(E)

– For each active LPD, the link type name
and link set information (see (m) below) for the
initial link set.

c) Start of document element only

– For each active simple link, the link type
name and attribute information (see (j) below)
for the link attributes.

d) Start of any element

– Generic identifier;

– Attribute information for the start-tag;

– For each applicable link rule, attribute
information for the link attributes;

– The application must inform the SGML
parser which applicable link rule it chose;

– For the chosen link rule, the result GI and
attribute information for the result element;

– If the element has an associated link set,
the link set information.

e) End of any element, including elements
declared to be empty

– Generic identifier

– Link set information for the link set that is
current immediately after the element (includ-
ing processing any relevant “#POSTLINK”
parameter)

NOTE – If the element was empty, ESIS does not indi-
cate why it was empty; that is, whether it was declared
to be empty, or whether an explicit content reference
occurred, or whether it just happened to contain no
data characters, subelements, or other content.

f) End of document instance set

NOTE – Processing instructions could occur between
the end of the document element and the end of the
document instance set.

g) Processing instruction

– System data

h) Link set use declaration

– Link set information

i) Data

– Includes no ignored characters (e.g.,
record starts);

– Includes only significant record ends, with
no indication of how significance was deter-
mined. Characters entered via character
references are not distinguished in any way.

Implementation-specific means can be used
to represent bit combinations that the applica-
tion cannot accept directly.

NOTES

1 Such bit combinations may be those of non-
SGML characters entered via character references,
but no significance is attached to this coincidence.

2 Bit combinations of non-SGML characters that
occurred directly in the source text would have been
flagged as errors, and would therefore never be
treated as data.

j) Attribute information

– All attribute values must be reported and
associated with their attribute names.

NOTES

1 For example, a parser could supply the
attribute names with each value, or supply the
values in an order that corresponds to a previously
supplied list of names.

2 The order of the tokens in a tokenized attribute
value shall be preserved as originally specified.

– Each unspecified impliable attribute must
be identified;

NOTE – For example, a parser could identify such
attributes explicitly, or it could allow the application to
determine them by comparing the identified specified
attribute values to a previously supplied list of attribute
names.

– There shall be no indication of whether an
attribute value was the default value;

– The order in which attributes are specified
in the attribute specification list is not part of
the ESIS;

– General entity name attribute values
include the entity name and entity text. The
entities themselves are not treated as having
been referenced;

NOTE – An application can use system services to
parse the entities, but such parsing is outside the con-
text of the current document.

– For notation attributes, the attribute value
includes the notation name and notation
identifier;

– For CDATA attributes, references to
SDATA entities in attribute value literals are
resolved. The replacement text is distin-
guished from the surrounding text and
identified as an individual SDATA entity;

– For CDATA attributes, references to
CDATA entities in attribute value literals are
resolved. The replacement text is not distin-

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

© ISO/IEC 2000 – All rights reserved 25

ISO/IEC 13673:2000(E)

guished from the surrounding text.

k) References to internal entities

– The information passed to the application
depends on the entity type:

SDATA: replacement text, identified as an
individual SDATA entity.

PI: replacement text, identified as a processing
instruction but not as an entity.

– For other references, nothing is passed to
the application.

NOTE – The replacement text is parsed in the context
in which the reference occurred, which can result in
other ESIS information being passed.

l) References to external entities

The information passed to the application
depends on the entity type:

– For data entities, the entity name and
entity text are passed. If a notation is named,
the notation name, notation identifier, and

attribute information for the data attributes are
also passed.

– For SGML text entities, nothing is passed
to the application.

NOTE – The replacement text is parsed in the context
in which the reference occurred, which can result in
other ESIS information being passed.

– For SUBDOC entities, the entity name and
entity text are passed. The application can
require that the subdocument entity be parsed
at the point at which the reference occurred.

NOTE – Parsing of the subdocument entity can result
in other ESIS information being passed. The occur-
rence of the end of the document instance set of the
subdocument entity will indicate that subsequent
ESIS information applies to the element from which
the subdocument entity was referenced.

m) Link set information

– All link rules whose source element speci-
fication is implied.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

26 © ISO/IEC 2000 – All rights reserved

ISO/IEC 13673:2000(E)

Annex B
(informative)

Sample tests and RAST results

This annex contains several typical test cases and their RAST results. These examples illustrate both ordi-
nary tests and RAST output.

B.1 A typical conforming document

The following is a typical test of a conforming document:

<!DOCTYPE g01b2404 [
<!--Categories:
element
markup declaration
prolog
-->
<!--
#PCDATA is a primitive content token (Clause 11.2.4,
Paragraph 4, Production 129).
-->
<!ELEMENT g01b2404 - - (g 01-g1)>
<!ELEMENT g01-g 1 - - (#PCDATA)>
]>
<g01b2404>
<g01-g1>
parsed character data
</g01-g1>
</g01b2404>

Its RAST result is:

[G01B2404]
[G01-G1]
|parsed character data|
[/G01-G1]
[/G01B2404]

B.2 An erroneous prolog

The following is a typical test of a document with an erroneous prolog:

<!DOCTYPE p01b2201 [
<!--Categories:
element
markup declaration
prolog
-->
<!--
Omitted tag minimization includes start-tag minimization and
end-tag minimization (Clause 11.2.2, Paragraph 1,
Production 122).
-->

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
67

3:2
00

0

https://standardsiso.com/api/?name=e9b041f3ad6d9f46726e906a0cc9319b

