
**Plastics — Carbon and environmental
footprint of biobased plastics —**

**Part 2:
Material carbon footprint, amount
(mass) of CO₂ removed from the
air and incorporated into polymer
molecule**

*Plastiques — Empreinte carbone et environnementale des plastiques
biosourcés*

*Partie 2: Empreinte carbone des matériaux, quantité (masse) de CO₂
captée dans l'air et incorporée dans les molécules de polymères*

STANDARDSISO.COM Copyright © ISO 2020
No reproduction without permission.
Click to view the full standard ISO 22526-2:2020

Reference number
ISO 22526-2:2020(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

	Page
Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms, definitions, symbols and abbreviated terms	1
3.1 Terms and definitions	1
3.2 Symbols	2
3.3 Abbreviated terms	2
4 Application	2
5 Material carbon footprint	2
5.1 Principle	2
5.2 Determination of the biobased carbon content	2
5.3 Determination or calculation of biobased carbon content on a mass base	2
5.4 Calculation of the amount (mass) of CO ₂ removed from the air and incorporated into 1 kg of the polymer	3
5.4.1 Calculation from biobased carbon content on a mass base	3
5.4.2 Calculation from biobased synthetic polymer content	3
Annex A (informative) Calculation of the amount of CO₂ removed from the air for each polymer	4
Annex B (informative) Value of equivalent emissions in typical activities	7
Bibliography	8

STANDARDSISO.COM Copyright © ISO 2020. Click to view the full PDF of ISO 22526 WG 2:2020. No reproduction without permission.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 14, *Environmental aspects*.

A list of all parts in the ISO 22526 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

Increased use of biomass resources for manufacturing plastic products can be effective in reducing global warming and the depletion of fossil resources.

Current plastic products are composed of biobased synthetic polymers, fossil-based synthetic polymers, natural polymers and additives that can include biobased materials.

Biobased plastics refer to plastics that contain materials wholly or partly of biogenic origin.

STANDARDSISO.COM Copyright © ISO 2020. All rights reserved. No reproduction or circulation of this document is permitted without the prior written consent of ISO. Click [to view the full PDF of ISO 22526 WG-2:2020](#) for the microsite on TC for food products.

STANDARDSISO.COM Copyright © 2020 ISO. All rights reserved.
No reproduction or circulation of full PDF of ISO 22526 WG-2:2020
to view the full PDF of ISO 22526 WG-2:2020
Click to view the full PDF of ISO 22526 WG-2:2020
for the microsite on TC for food products.

Plastics — Carbon and environmental footprint of biobased plastics —

Part 2:

Material carbon footprint, amount (mass) of CO₂ removed from the air and incorporated into polymer molecule

1 Scope

This document defines the material carbon footprint as the amount (mass) of CO₂ removed from the air and incorporated into plastic, and specifies a determination method to quantify it.

This document is applicable to plastic products, plastic materials and polymer resins that are partly or wholly based on biobased constituents.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 472, *Plastics — Vocabulary*

ISO 16620-1, *Plastics — Biobased content — Part 1: General principles*

ISO 16620-2:2019, *Plastics — Biobased content — Part 2: Determination of biobased carbon content*

ISO 16620-3:2015, *Plastics — Biobased content — Part 3: Determination of biobased synthetic polymer content*

ISO 16620-4, *Plastics — Biobased content — Part 4: Determination of biobased mass content*

ISO 16620-5, *Plastics — Biobased content — Part 5: Declaration of biobased carbon content, biobased synthetic polymer content and biobased mass content*

3 Terms, definitions, symbols and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 472, ISO 16620-1, ISO 16620-2, ISO 16620-3, ISO 16620-4 and ISO 16620-5 apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <http://www.electropedia.org/>

3.2 Symbols

m_{BSP}	biobased synthetic polymer content, expressed as a percentage of the total mass
m_c	fraction of carbon present in a product, in %
M_B	biobased carbon content on a mass base (kg) per 1 kg of polymer
M_{CO_2}	amount (mass) of CO_2 removed from the air and incorporated into 1 kg of the polymer
$M_{CO_2,x}$	amount (mass) of CO_2 removed from the air per 1 kg of each polymer
x_B^{TC}	biobased carbon content by total carbon content, expressed as a percentage of the total carbon content
x_B^{TOC}	biobased carbon content by total organic carbon content, expressed as a percentage of the total organic carbon content

3.3 Abbreviated terms

TC	total carbon
TOC	total organic carbon

4 Application

Material carbon footprint shall not be used for a communication on overall environmental superiority because the material carbon footprint covers only a single impact category.

5 Material carbon footprint

5.1 Principle

Material carbon footprint is based on the biobased carbon content of the biobased polymers, plastics or products. Therefore, material carbon footprint according to this document is applicable to plastic products, including semi-finished and finished plastic products, plastic materials, polymers, polymer resins, monomers or additives that are partly or wholly based on biobased constituents.

5.2 Determination of the biobased carbon content

Biobased carbon content of the product as % of the total organic carbon x_B^{TOC} or as % of the total carbon x_B^{TC} is experimentally determined using radiocarbon analysis as described in ISO 16620-2:2019, 8.3.1, 8.3.2 and 8.3.3.

5.3 Determination or calculation of biobased carbon content on a mass base

Biobased carbon content on a mass base (kg) per 1 kg of polymer (M_B) is determined or calculated using [Formula \(1\)](#):

$$M_B = \left(\frac{m_c}{100} \right) \times \left(\frac{x_B^{TOC} \text{ or } x_B^{TC}}{100} \right) \quad (1)$$

where m_c is the fraction of carbon present in a product, in %, and is

- experimentally determined with the elemental analysis, or

— calculated from the structural formulation.

5.4 Calculation of the amount (mass) of CO₂ removed from the air and incorporated into 1 kg of the polymer

5.4.1 Calculation from biobased carbon content on a mass base

The amount (mass) of CO₂ removed from the air and incorporated to 1 kg of biobased polymer (M_{CO_2}) is calculated using [Formula \(2\)](#):

$$M_{CO_2} = M_B \times \frac{44}{12} \quad (2)$$

5.4.2 Calculation from biobased synthetic polymer content

If the biobased synthetic polymer in the product is structurally determined, the amount (kg) of CO₂ removed from the air for 1 kg of each polymer can be calculated as described in [Annex A](#). In this case, the amount (kg) of CO₂ removed from the air, $M_{CO_2,x}$, can be calculated using the biobased synthetic polymer content (m_{BSP}) as shown in [Formula \(3\)](#):

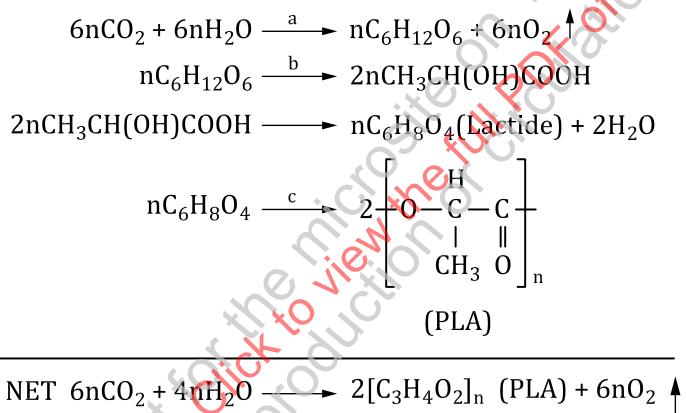
$$M_{CO_2} = M_{CO_2,x} \times m_{BSP} \quad (3)$$

where $M_{CO_2,x}$ is the amount (mass) of CO₂ removed from the air per 1 kg of each polymer.

Biobased synthetic polymer content (m_{BSP}) is determined as described in ISO 16620-3:2015, 6.2, Formula (1).

Annex A

(informative)


Calculation of the amount of CO₂ removed from the air for each polymer

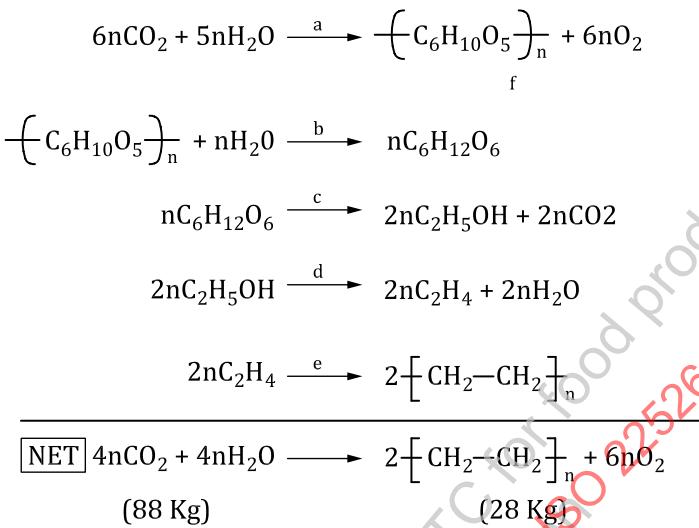
A.1 General

Some examples are given in this annex for the calculation of the amount of CO₂ removed from the air from the chemical structure of each biobased polymer.

A.2 Polylactic acid (PLA)

In the case of PLA, 1,83 kg of CO₂ removed from the environment to manufacture 1 kg of PLA. See [Figure A.1](#).

a Photosynthesis.

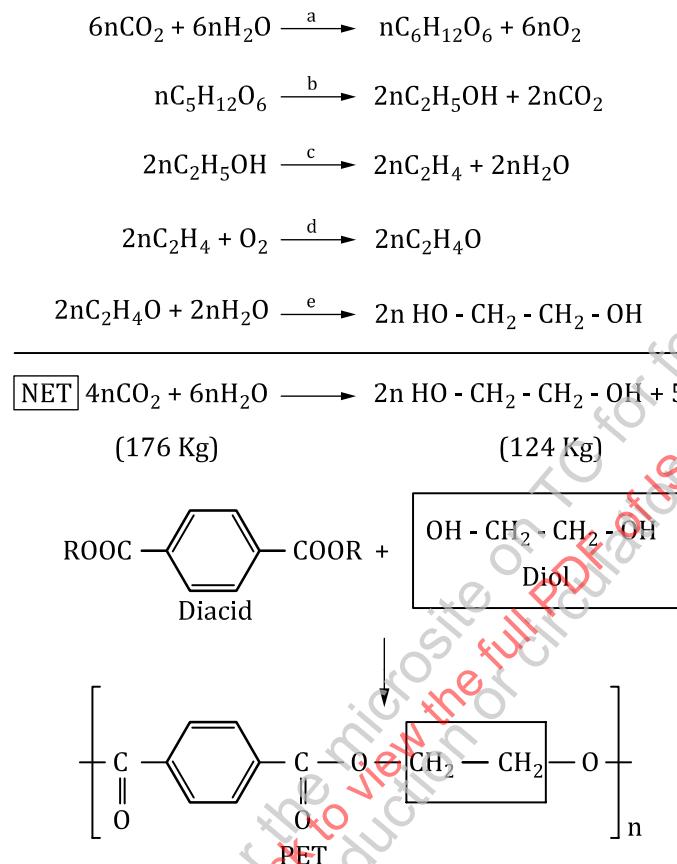

b Fermentation.

c Polymerization.

Figure A.1 — Polylactic acid (PLA)

A.3 Biobased polyethylene (bio-PE)

In the case of bio-PE, 3,14 kg of CO₂ removed from the environment to manufacture 1 kg of bio-PE. See [Figure A.2](#).



- a Photosynthesis.
- b Hydrolysis.
- c Fermentation.
- d Dehydration.
- e Polymerization.

Figure A.2 — Bio-polyethylene (PE)

A.4 Biobased polyethylene terephthalate (bio-PET)

In the case of bio-PET, which is partially (about 30 %) biobased, 1,42 kg of CO₂ is removed from the air per kg of bio-mono ethylene glycol (bio-MEG). Further, 0,46 kg of CO₂ is removed from the air per kg of bio-PET.

Terephthalic acid = 8C; Ethylene glycol = 2C; biocontent is 20 % on total carbon or total organic carbon

Acid component = 68,75 %; glycol component = 31,25 % on total mass basis

- a Photosynthesis.
- b Fermentation.
- c Dehydration.
- d Oxidation.
- e Hydrolysis.

Figure A.3 — Biobased polyethylene terephthalate (bio-PET)