

Reference number
ISO 15765-3:2004(E)

© ISO 2004

INTERNATIONAL
STANDARD

ISO
15765-3

First edition
2004-10-15

Road vehicles — Diagnostics on
Controller Area Networks (CAN) —
Part 3:
Implementation of unified diagnostic
services (UDS on CAN)

Véhicules routiers — Diagnostic sur gestionnaire de réseau de
communication (CAN) —

Partie 3: Mise en œuvre des services de diagnostic unifiés (SDU sur
CAN)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2004
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2004 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved iii

Contents Page

Foreword... v
Introduction ... vi
1 Scope.. 1
2 Normative references ... 1
3 Terms, definitions and abbreviated terms.. 2
4 Conventions .. 2
5 Unified diagnostic services (UDS) applicability to OSI model ... 2
6 Application and session layers ... 2
6.1 Application layer services.. 2
6.2 Application layer protocol.. 2
6.3 Application layer and diagnostic session management timing... 2
6.3.1 General ... 2
6.3.2 Application layer timing parameter definitions ... 4
6.3.3 Session layer timing parameter definitions ... 6
6.3.4 Client and server timer resource requirements... 6
6.3.5 Detailed timing parameter descriptions ... 9
6.3.6 Error handling ... 27
7 Network layer interface... 29
7.1 General information .. 29
7.2 FlowControl N_PCI parameter definition.. 29
7.3 Mapping of A_PDU onto N_PDU for message transmission.. 29
7.4 Mapping of N_PDU onto A_PDU for message reception .. 29
8 Standardized diagnostic CAN identifiers ... 30
8.1 Legislated 11 bit OBD CAN identifiers.. 30
8.2 Legislated 29 bit OBD CAN identifiers.. 30
8.3 Enhanced diagnostics 29 bit CAN identifiers .. 30
8.3.1 General information .. 30
8.3.2 Structure of 29 bit CAN identifier .. 31
8.3.3 Structure of address ... 33
8.3.4 Message retrieval .. 35
8.3.5 Routing... 36
9 Diagnostic services implementation... 40
9.1 Unified diagnostic services overview ... 40
9.2 Diagnostic and communication control functional unit ... 42
9.2.1 DiagnosticSessionControl (10 hex) service... 42
9.2.2 ECUReset (11 hex) service... 42
9.2.3 SecurityAccess (27 hex) service ... 43
9.2.4 CommunicationControl (28 hex) service .. 43
9.2.5 TesterPresent (3E hex) service.. 43
9.2.6 SecuredDataTransmission (84 hex) service... 44
9.2.7 ControlDTCSetting (85 hex) service.. 44
9.2.8 ResponseOnEvent (86 hex) service .. 44
9.2.9 LinkControl (87 hex) service.. 47
9.3 Data transmission functional unit ... 47
9.3.1 ReadDataByIdentifier (22 hex) service.. 47
9.3.2 ReadMemoryByAddress (23 hex) service .. 47
9.3.3 ReadScalingDataByIdentifier(24 hex) service.. 48

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

iv © ISO 2004 – All rights reserved

9.3.4 ReadDataByPeriodicIdentifier (2A hex) service ...48
9.3.5 DynamicallyDefineDataIdentifier (2C hex) service...54
9.3.6 WriteDataByIdentifier (2E hex) service ...54
9.3.7 WriteMemoryByAddress (3D hex) service..54
9.4 Stored data transmission functional unit ...54
9.4.1 ReadDTCInformation (19 hex) service ..54
9.4.2 ClearDiagnosticInformation (14 hex) service ...56
9.5 Input/Output control functional unit..56
9.5.1 InputOutputControlByIdentifier (2F hex) service...56
9.6 Remote activation of routine functional unit ..56
9.6.1 RoutineControl (31 hex) service ..56
9.7 Upload/Download functional unit ..57
9.7.1 RequestDownload (34 hex) service...57
9.7.2 RequestUpload (35 hex) service ..57
9.7.3 TransferData (36 hex) service ..57
9.7.4 RequestTransferExit (37 hex) service ...57
10 Non-volatile server memory programming process..58
10.1 General information ..58
10.2 Detailed programming sequence...61
10.2.1 Programming phase #1 — Download of application software and/or application data...............61
10.2.2 Programming phase #2 — Server configuration..66
10.3 Server reprogramming requirements..69
10.3.1 Programmable servers and their categories ..69
10.3.2 Requirements for all servers to support programming...70
10.3.3 Requirements for programmable servers to support programming ...70
10.3.4 Software, data identification and fingerprints..74
10.3.5 Server routine access ...77
10.4 Non-volatile server memory programming message flow examples ..78
10.4.1 General information ..78
10.4.2 Programming phase #1 — Pre-Programming step ..78
10.4.3 Programming phase #1 — Programming step ...79
10.4.4 Programming phase #1 — Post-Programming step ..86
Annex A (normative) Network configuration dataIdentifier definitions ..87
Bibliography..92

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved v

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 15765-3 was prepared by Technical Committee ISO/TC 22, Road vehicles, Subcommittee SC 3,
Electrical and electronic equipment.

ISO 15765 consists of the following parts, under the general title Road vehicles — Diagnostics on Controller
Area Networks (CAN):

 Part 1: General information

 Part 2: Network layer services

 Part 3: Implementation of unified diagnostic services (UDS on CAN)

 Part 4: Requirements for emissions-related systems

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

vi © ISO 2004 – All rights reserved

Introduction

This part of ISO 15765 has been established in order to enable the implementation of unified diagnostic
services, as specified in ISO 14229-1, on controller area networks (UDS on CAN).

To achieve this, it is based on the Open Systems Interconnection (OSI) Basic Reference Model specified in
ISO/IEC 7498 and ISO/IEC 10731, which structures communication systems into seven layers. When mapped
on this model, the services specified by ISO 15765 are divided into

 unified diagnostic services (layer 7), specified in this part of ISO 15765,

 network layer services (layer 3), specified in ISO 15765-2,

 CAN services (layers 1 and 2), specified in ISO 11898,

in accordance with Table 1.

Table 1 — Enhanced and legislated OBD diagnostic specifications applicable to the OSI layers

Open Systems
Interconnection

(OSI) layers

Vehicle manufacturer enhanced
diagnostics

Legislated on-board
diagnostics

(OBD)

Diagnostic application User defined ISO 15031-5

Application layer ISO 15765-3 ISO 15031-5

Presentation layer N/A N/A

Session layer ISO 15765-3 N/A

Transport layer N/A N/A

Network layer ISO 15765-2 ISO 15765-4

Data link layer ISO 11898-1 ISO 15765-4

Physical layer User defined ISO 15765-4

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

INTERNATIONAL STANDARD ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 1

Road vehicles — Diagnostics on Controller Area Networks
(CAN) —

Part 3:
Implementation of unified diagnostic services (UDS on CAN)

1 Scope

This part of ISO 15765 specifies the implementation of a common set of unified diagnostic services (UDS), in
accordance with ISO 14229-1, on controller area networks (CAN) in road vehicles as specified in ISO 11898.
It gives the diagnostic services and server memory programming requirements for all in-vehicle servers
connected to a CAN network and external test equipment. It does not specify any requirement for the in-
vehicle CAN bus architecture.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 14229-1, Road vehicles — Unified diagnostic services (UDS) — Part 1: Specification and requirements

ISO 11898-1, Road vehicles — Controller area network (CAN) — Part 1: Data link layer and physical
signalling

ISO 11898-2, Road vehicles — Controller area network (CAN) — Part 2: High-speed medium access unit

ISO 11898-3, Road vehicles — Controller area network (CAN) — Part 3: Low-speed, fault-tolerant, medium
dependent interface1)

ISO 15031-6, Road vehicles — Communication between vehicle and external equipment for emissions-related
diagnostics — Part 6: Diagnostic trouble code definitions1)

ISO 15765-1, Road vehicles — Diagnostics on controller area network (CAN) — Part 1: General information

ISO 15765-2, Road vehicles — Diagnostics on controller area network (CAN) — Part 2: Network layer
service1)

ISO 15765-4, Road vehicles — Diagnostics on controller area network (CAN) — Part 4: Requirements for
emissions-related systems1)

SAE J1939-21, Recommended practice for a serial control and communications vehicle network — Data link
layer2)

1) To be published.

2) Society of Automotive Engineers standard.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

2 © ISO 2004 – All rights reserved

3 Terms, definitions and abbreviated terms

For the purposes of this document, the terms and definitions given in ISO 14229-1, ISO 15765-1 and
ISO 15765-2 and the following abbreviated terms apply.

DA destination address

ID identifier

DLC data length code

GW gateway

LSB least significant bit

MSB most significant bit

NA network address

SA source address

SM subnet mask

TOS type of service

4 Conventions

This part of ISO 15765 is based on conventions defined in ISO 14229-1, which are guided by OSI Service
Conventions (see ISO/TR 8509) as they apply for diagnostic services.

5 Unified diagnostic services (UDS) applicability to OSI model

See Figure 1.

6 Application and session layers

6.1 Application layer services

This part of ISO 15765 uses the application layer services as defined in ISO 14229-1 for client-server based
systems to perform functions such as test, inspection, monitoring, diagnosis or programming of on-board
vehicle servers.

6.2 Application layer protocol

This part of ISO 15765 uses the application layer protocol as defined in ISO 14229-1.

6.3 Application layer and diagnostic session management timing

IMPORTANT — Any N_USData.indication with <N_Result> not equal to N_OK that is generated in the
server shall not result in a response message from the server application.

6.3.1 General

The following specifies the application layer and session layer timing parameters and how they are handled
for the client and the server.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 3

Figure 1 — Implementation of UDS on CAN in OSI model

The following communication scenarios shall be distinguished from one another:

a) physical communication during

1) default session, and

2) non-default session — session handling required;

b) functional communication during

1) default session, and

2) non-default session — session handling required.

For all cases, the possibility of requesting an enhanced response-timing window by the server via a negative
response message, including a response code 78 hex, shall be considered.

The network layer services as defined in ISO 15765-2 are used to perform the application layer and diagnostic
session management timing in the client and the server.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

4 © ISO 2004 – All rights reserved

6.3.2 Application layer timing parameter definitions

The application layer timing parameter values for the default diagnostic session shall be in accordance with
Table 2.

Table 2 — Application layer timing parameter definitions for the defaultSession

Timing
parameter

Description Type Min. Max.

P2CAN_Client

Timeout for the client to wait after the successful
transmission of a request message (indicated via
N_USData.con) for the start of incoming response
messages (N_USDataFirstFrame.ind of a multi-frame
message or N_USData.ind of a SingleFrame message).

Timer reload
value P2CAN_Server_max

+
∆P2CAN

N/A a

P2*CAN_Client

Enhanced timeout for the client to wait after the reception
of a negative response message with response code 78
hex (indicated via N_USData.ind) for the start of incoming
response messages (N_USDataFirstFrame.ind of a multi-
frame message or N_USData.ind of a SingleFrame
message).

Timer reload
value P2*CAN_Server_max

+
∆P2CAN_rsp

N/A b

P2CAN_Server
Performance requirement for the server to start with the
response message after the reception of a request
message (indicated via N_USData.ind).

Performance
requirement 0 50 ms

P2*CAN_Server

Performance requirement for the server to start with the
response message after the transmission of a negative
response message (indicated via N_USData.con) with
response code 78 hex (enhanced response timing).

Performance
requirement 0 c 5000 ms

P3CAN_Client_Phys

Minimum time for the client to wait after the successful
transmission of a physically addressed request message
(indicated via N_USData.con) with no response required
before it can transmit the next physically addressed
request message (see 6.3.5.3).

Timer reload
value

P2CAN_Server_max N/A d

P3CAN_Client_Func

Minimum time for the client to wait after the successful
transmission of a functionally addressed request message
(indicated via N_USData.con) before it can transmit the
next functionally addressed request message in case no
response is required or the requested data is only
supported by a subset of the functionally addressed
servers (see 6.3.5.3).

Timer reload
value

P2CAN_Server_max N/A d

a The maximum time a client waits for a response message to start is at the discretion of the client, provided that P2CAN_Client is
greater than the specified minimum value of P2CAN_Client.

b The value that a client uses for P2*CAN_Client is at the discretion of the client, provided it is greater than the specified minimum
value of P2*CAN_Client.

c During the enhanced response timing, the minimum time between the transmission of consecutive negative messages, each with
response code 78 hex, shall be ½ P2*CAN_Server_max, with a maximum tolerance of ± 20% of P2*CAN_Server_max..

d The maximum time a client waits until it transmits the next request message is at the discretion of the client, provided that for non-
default sessions the S3Server timing is kept active in the server(s).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 5

The parameter ∆P2CAN considers any system network design-dependent delays such as delays introduced by
gateways and bus bandwidth plus a safety margin (e.g. 50 % of worst case). The worst-case scenario
(transmission time necessary for one “round trip” from client to server and back from server to client), based
on system design, is impacted by

a) the number of gateways involved,

b) CAN frame transmission time (baud rate),

c) CAN bus utilization, and

d) the CAN device driver implementation method (polling vs interrupt) and processing time of the network
layer.

The value of ∆P2CAN is divided into the time to transmit the request to the addressed server and the time to
transmit the response to the client:

∆P2CAN = ∆P2CAN_Req + ∆P2CAN_Rsp

Figure 2 provides an example of how ∆P2CAN can be composed.

Figure 2 — Example for ∆∆∆∆P2CAN — SingleFrame request and response message

NOTE For the sake of simplicity in describing the timing parameters, in all the figures that follow it is assumed that
the client and the server are located on the same network. All descriptions and figures are presented in a time-related
sequential order.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

6 © ISO 2004 – All rights reserved

6.3.3 Session layer timing parameter definitions

When a diagnostic session other than the defaultSession is started, then a session handling is required which
is achieved via the session layer timing parameter given in Table 3.

Table 3 — Session layer timing parameter definitions

Recommended
timeout

Timeout
Timing

parameter Description Type
ms ms

S3Client

Time between functionally addressed TesterPresent (3E
hex) request messages transmitted by the client to keep a
diagnostic session other than the defaultSession active in
multiple servers (functional communication) or maximum
time between physically transmitted request messages to a
single server (physical communication).

Timer
reload
value

2 000 ms 4 000 ms

S3Server
Time for the server to keep a diagnostic session other than
the defaultSession active while not receiving any diagnostic
request message.

Timer
reload
value

N/A 5 000 ms

Furthermore, the server might change its application layer timings P2CAN_Server and P2*CAN_Server when
transitioning into a non-default session in order to achieve a certain performance or to compensate restrictions
which might apply during a non-default diagnostic session. The applicable timing parameters for a non-default
diagnostic session are reported in the DiagnosticSessionControl positive response message in the case
where a response is required to be transmitted (see service description in 9.2.1) or have to be known in
advance by the client in case no response is required to be transmitted. When the client starts a non-default
session functionally, then it shall adapt to the timing parameters of the responding servers.

Table 4 defines the conditions for the client and the server to start/restart its S3Client/S3Server timer. For the
client a periodically transmitted functionally addressed TesterPresent (3E hex) request message shall be
distinguished from a sequentially transmitted physically addressed TesterPresent (3E hex) request message,
which is only transmitted in case of the absence of any other diagnostic request message. For the server
there is no need to distinguish between that kind of TesterPresent (3E hex) handling. Furthermore, Table 4
shows that the S3Server timer handling is based on the network layer service primitives, which means that the
S3Server timer is also restarted upon the reception of a diagnostic request message that is not supported by
the server.

6.3.4 Client and server timer resource requirements

The timer resource required for the client and the server to fulfil the above given timing requirements during
the default session and any non-default session shall be in accordance with Tables 5 and 6 list. During a non-
default session, the additional timer resource requirements given in Table 6 shall apply for the client and the
server.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 7

Table 4 — Session layer timing start/stop conditions for the client and the server

Timing
Parameter

Action Physical and functional communication,
using functionally addressed,

periodically transmitted
TesterPresent request message

Physical communication only,
using a physically addressed,

sequentially transmitted
TesterPresent request message

N_USData.con that indicates the
completion of the DiagnosticSessionControl
(10 hex) request message in case no
response is required. Initial

start

N_USData.con that indicates the
completion of the DiagnosticSessionControl
(10 hex) request message. This is only true
for if the session type is a non-default
session.

N_USData.ind that indicates the reception
of the DiagnosticSessionControl (10 hex)
response message in case a response is
required.

N_USData.con that indicates the
completion of any request message in case
no response is required.

N_USData.ind that indicates the reception
of any response message in case a
response is required.

S3Client

Subsequent
start

N_USData.con that indicates the
completion of the functionally addressed
TesterPresent (3E hex) request message,
which is transmitted each time the S3Client
timer times out. N_USData.ind that indicates an error during

the reception of a multi-frame response
message.

N_USData.con that indicates the completion of the transmission of a
DiagnosticSessionControl positive response message for a transition from the default
session to a non-default session, in case a response message is required.

Initial start
Successful completion of the requested action of the service DiagnosticSessionControl
(10 hex) for a transition from the default session to a non-default session, in case no
response message is required/allowed.

Subsequent
stop

N_USDataFirstFrame.ind that indicates the start of a multi-frame request message or
N_USData.ind that indicates the reception of any SingleFrame request message. If the
defaultSession is active, the S3Server timer is disabled.

N_USData.con that indicates the completion of any response message that concludes a
service execution (final response message) in case a response message is
required/allowed to be transmitted (this includes positive and negative response
messages). A negative response with response code 78 hex does not restart the S3Server
timer.

Completion of the requested action (service conclusion) in case no response message
(positive and negative) is required/allowed.

N_USData.ind that indicates an error during the reception of a multi-frame request
message.

S3Server

Subsequent
start

See 6.3.5.4 for further details regarding the S3Server handling in the server when the server
is requested to transmit unsolicited response message such as periodic data or responses
based on an event.

 STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

8 © ISO 2004 – All rights reserved

Table 5 — Timer resources requirements during defaultSession

Timing
parameter

Client Server

P2CAN_Client

A single timer is required for each logical
communication channel (physical and
functional communication), e.g. each point-to-
point communication requires a separate
communication channel.

N/A

P2CAN_Server N/A

An optional timer might be required for the
enhanced response timing in order to ensure that
subsequent negative response messages with
response code 78 hex are transmitted prior to the
expiration of P2*CAN_Server.

P3CAN_Physical
A single timer is required per logical physical
communication channel. N/A

P3CAN_Functional
A single timer is required per logical functional
communication channel. N/A

Table 6 — Additional timer resources requirements during non-defaultSession

Timing Parameter Client Server

A single timer is required when using a periodically
transmitted, functionally addressed TesterPresent
(3E) hex request message to keep the servers in a
non-defaultSession. There is no need for additional
timers per activated diagnostic sessions.

N/A

S3Client A single timer is required for each point-to-point
communication channel when using a sequentially
transmitted, physically addressed TesterPresent
(3E) hex request message to keep a single server in
a non-defaultSession in case of the absence of
another diagnostic request message then.

S3Server N/A
A single timer is required in the server,
because only a single diagnostic session
can be active at a time in a single server.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 9

6.3.5 Detailed timing parameter descriptions

6.3.5.1 Physical communication

6.3.5.1.1 Physical communication during defaultSession

Figure 3 graphically depicts the timing handling in the client and the server for a physically addressed request
message during the default session.

a The diagnostic application of the client starts the transmission of the request message by issuing a N_USData.req to
its network layer. The network layer transmits the request message to the server. The request message can either be a
single-frame message or a multi-frame message.
b In the case of a multi-frame message, the start of the request is indicated in the server via N_USDataFF.ind that is
issued by its network layer.
c The completion of the request message is indicated in the client via N_USData.con. When receiving the
N_USData.con the client starts its P2CAN_Client timer, using the default reload value P2CAN_Client. The value of the
P2CAN_Client timer shall consider any latency that is involved based on the vehicle network design (communication over
gateways, bus bandwidth, etc.). For simplicity, the figure assumes that the client and the server are located on the same
network.
d The completion of the request message is indicated in the server via the N_USData.ind.
e The server is required to start with its response message within P2CAN_Server after the reception of N_USData.ind.
This means that, in the case of a multi-frame response message, the FirstFrame shall be sent within P2CAN_Server and, for
single-frame response messages, that the SingleFrame shall be sent within P2CAN_Server.
f In the case of a multi-frame response message, the reception of the FirstFrame is indicated in the client via the
N_USDataFF.ind of its network layer. When receiving the FirstFrame indication, the client stops its P2CAN_Client timer.
g The network layer will generate a final N_USData.ind in case the complete message is received or an error occurred
during the reception. In case of a single-frame response message, the reception of the SingleFrame is indicated in the
client via a single N_USData.ind. When receiving this single frame indication, the client stops its P2CAN_Client timer.
h The completion of the response message is indicated in the server via N_USData.con.

Figure 3 — Physical communication during default session

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

10 © ISO 2004 – All rights reserved

6.3.5.1.2 Physical communication during defaultSession with enhanced response timing

Figure 4 graphically depicts the timing handling in the client and the server for a physically addressed request
message during the default session and the request of the server for an enhanced response timing (negative
response code 78 hex handling).

a The diagnostic application of the client starts the transmission of the request message by issuing a N_USData.req to
its network layer. The network layer transmits the request message to the server. The request message can either be a
single-frame or multi-frame message.
b In the case of a multi-frame message, the start of the request is indicated in the server via N_USDataFF.ind that is
issued by its network layer.
c The completion of the request message is indicated in the client via N_Usdata.con. When receiving the
N_USData.con, the client starts its P2CAN_Client timer, using the default reload value P2CAN_Client. The value of the
P2CAN_Client timer shall consider any latency that is involved based on the vehicle network design (e.g. communication
over gateways, bus bandwidth, etc.). For simplicity, the figure assumes that the client and the server are located on the
same network.
d The completion of the request message is indicated in the server via N_USData.ind.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 11

e The server is required to start with its response message within P2CAN_Server after the reception of N_USData.ind.
This means that, in the case of a multi-frame response message, the FirstFrame shall be sent within P2CAN_Server and, for
single-frame response messages, that the SingleFrame shall be sent within P2CAN_Server.
f In case the server cannot provide the requested information within the P2CAN_Server response timing, it can request an
enhanced response timing window by sending a negative response message including response code 78 hex. Upon
reception of the negative response message within the client, the client network layer generates a N_USData.ind. The
reception of a negative response message with response code 78 hex causes the client to restart its P2CAN_Client timer,
but using the enhanced reload value P2*CAN_Client.
g The server is required to start with its response message within the enhanced P2CAN_Server (P2*CAN_Server) following
the N_USData.con of the transmitted negative response message. In case the server can still not provide the requested
information within the enhanced P2*CAN_Server, then a further negative response message including response code 78 hex
can be sent by the server. This will cause the client to restart its P2CAN_Client timer, using the enhanced reload value
P2*CAN_Client. For simplicity, the figure only shows a single negative response message with response code 78 hex.
h Once the server can provide the requested information (positive or negative response other than response code 78
hex), it starts with its final response message.
i In the case of a multi-frame final response message, the reception of the FirstFrame is indicated in the client via the
N_USDataFF.ind of the network layer. When receiving the FirstFrame indication, the client stops its P2CAN_Client timer.
j The network layer of the client will generate a final N_USData.ind in case the complete message is received or an
error occurred during the reception. In the case of a single-frame response message, the reception of the SingleFrame is
indicated in the client via a single N_USData.ind. When receiving this single-frame indication, the client stops its
P2CAN_Client timer.
k The completion of the transmission will also be indicated in the server via N_USData.con.

Figure 4 — Physical communication during non-default session — Enhanced response timing

6.3.5.1.3 Physical communication during a non-default session

6.3.5.1.3.1 Functionally addressed TesterPresent (3E hex) message

Figure 5 graphically depicts the timing handling in the client and the server when performing physical
communication during a non-default session (e.g. programmingSession) and using a functionally addressed,
periodically transmitted TesterPresent (3E hex) request message that does not require a response message
from the server.

The handling of the P2CAN_Client and P2CAN_Server timing is identical to the handling as described in 6.3.5.1.1
and 6.3.5.1.2. The only exception is that the reload values on the client side and the resulting time where the
server shall send its final response time might differ. This is based on the transition into a session other than
the default session where different P2CAN_Client timing parameters might apply (see DiagnosticSessionControl
(10 hex) service in 9.2.1 for details on how the timing parameters are reported to the client).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

12 © ISO 2004 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 13

a The diagnostic application of the client starts the transmission of the DiagnosticSessionControl (10 hex) request
message by issuing a N_USData.req to its network layer. The network layer transmits the request message to the server.
b The request message is a single-frame message. Its completion is indicated in the client via the N_USData.con. Now
the response timing as described in 6.3.5.1.1 and 6.3.5.1.2 applies. The generated N_USData.con in the client causes the
start of the S3Client timer (session timer).
c The completion of the request message is indicated in the server via the N_USData.ind. Now the response timing as
described in 6.3.5.1.1 and 6.3.5.1.2 applies.
d For the figure given, it is assumed that the client requires a response from the server. The server shall transmit the
DiagnosticSessionControl (10 hex) positive response message.
e The completion of the transmission of the response message is indicated in the server via N_USData.con. Now the
server starts its S3Server timer, which keeps the activated non-default session active as long as it does not time out. It is
the client's responsibility to ensure that the S3Server timer is reset prior to its timeout to keep the server in the non-default
session.
f Once the S3Client timer is started in the client, this causes the transmission of a functionally addressed TesterPresent
(3E hex) request message, which does not require a response message, each time the S3Client timer times out.
g Upon the indication of the completed transmission of the TesterPresent (3E hex) request message via N_USData.con
of its network layer, the client once again starts its S3Client timer. This means that the functionally addressed TesterPresent
(3E hex) request message is sent on a periodic basis every time S3Client times out.
h Any time the server is in the process of handling any diagnostic service, it stops its S3Server timer.
i When the diagnostic service is completely processed, then the server restarts its S3Server timer. This means that any
diagnostic service, including TesterPresent (3E hex), resets the S3Server timer. A diagnostic service is meant to be in
progress any time between the start of the reception of the request message (N_USDataFF.ind or N_USData.ind receive)
and the completion of the transmission of the final response message, where a response message is required, or the
completion of any action that is caused by the request, where no response message is required (point in time reached that
would cause the start of the response message).
j Any TesterPresent (3E hex) request message that is received during processing another request message can be
ignored by the server, because it has already stopped its S3Server timer and will restart it once the service that is in
progress is processed completely.

Figure 5 — Physical communication during non-default session – functionally addressed
TesterPresent

6.3.5.1.3.2 Physically addressed TesterPresent (3E hex) message

Figure 6 graphically depicts the timing handling in the client and the server when performing physical
communication during a non-default session (e.g. programmingSession) and using a physically addressed
TesterPresent (3E hex) request message that requires a response message from the server to keep the
diagnostic session active in case of the absence of any other diagnostic service.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

14 © ISO 2004 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 15

a The diagnostic application of the client starts the transmission of the DiagnosticSessionControl (10 hex) request
message by issuing a N_USData.req to its network layer. The network layer transmits the request message to the server.
b The request message is a single-frame message. Its completion is indicated in the client via the N_USData.con. Now
the response timing as described in 6.3.5.1.1 and 6.3.5.1.2 applies. The generated N_USData.con in the client does not
cause the start of the S3Client timer (session timer), as it would for the case of using a functionally addressed and
periodically transmitted TesterPresent (3E hex) message to keep a diagnostic session alive (see 6.3.5.1.3.1).
c The completion of the request message is indicated in the server via the N_USData.ind. Now the response timing as
described in 6.3.5.1.1 and 6.3.5.1.2 applies.
d For the figure given, it is assumed that the client requires a response from the server. The server shall transmit the
DiagnosticSessionControl (10 hex) positive response message.
e The completion of the transmission of the response message is indicated in the server via N_USData.con. Now the
server starts its S3Server timer, which keeps the activated non-default session active as long as it does not time out. In the
client, the reception of the DiagnosticSessionControl (10 hex) positive response message is indicated via N_USData.ind.
This causes the start of the S3Client timer. It is the client's responsibility to ensure that the S3Server timer is reset prior to its
timeout to keep the server in the non-default session.
f Whenever the client transmits a request message to the server (including the TesterPresent (3E hex) message), it
stops its S3Client timer.
g The reception of either a SingleFrame or a FirstFrame of the request message stops the S3Server timer in the server.
The completion of the request message is indicated in the server via N_USData.ind. Now the response timing as
described in 6.3.5.1.1 and 6.3.5.1.2 applies.
h The completion of the response message is indicated in the client via N_USData.ind, which causes the client to start
its S3Client. The completion of the response message is indicated in the server via N_USData.con, which causes the
server to start its S3Server. In a case where the client would not require a response message, then it shall start its S3Client
timer when it receives confirmation of the completion of the request message, which is indicated via N_USData.con. The
server would start its S3Server timer when it has completed the requested action. For simplicity, the figure shows that a
response is required.
i In case the client would not send any diagnostic request message prior to the timeout of S3Client, then the timeout of
the S3Client timer causes the client to transmit a physically addressed TesterPresent (3E hex) request message.
j The reception of the TesterPresent (3E hex) request message is indicated in the server via N_USData.ind. This
causes the server to stop its S3Server timer. Now the response timing as described in 6.3.5.1.1 and 6.3.5.1.2 applies.
k The completion of the TesterPresent (3E hex) response message is indicated in the client via N_USData.ind, which
causes the client to start its S3Client. The completion of the TesterPresent (3E hex) response message is indicated in the
server via N_USData.con, which causes the server to start its S3Server. In the case where the client would not require a
response message, then it shall start its S3Client timer when it receives confirmation of the completion of the TesterPresent
(3E hex) request message, which is indicated via N_USData.con. The server would start its S3Server timer when it has
completed the requested action. For simplicity, the figure shows that a response is required.

Figure 6 — Physical communication during non-default session — Physically addressed
TesterPresent

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

16 © ISO 2004 – All rights reserved

6.3.5.2 Functional communication

6.3.5.2.1 Functional communication during defaultSession

Figure 7 graphically depicts the timing handling in the client and two (2) servers for a functionally addressed
request message during the default session. From a server point of view, there is no difference in the timing
handling compared to a physically addressed request message, but the client shall handle the timing different
compared to physical communication.

a The diagnostic application of the client starts the transmission of a functionally addressed request message by issuing
a N_USData.req to its network layer. The network layer transmits the request message to the servers. A functionally
addressed request message shall only be a single-frame message.
b The completion of the request message is indicated in the client via N_USData.con. When receiving the
N_USData.con, the client starts its P2CAN_Client timer, using the default reload value P2CAN_Client. As for physical
communication, the value of the P2CAN_Client timer shall consider any latency that is involved based on the vehicle network
design (e.g. communication over gateways, bus bandwidth, etc.). For simplicity, the figure assumes that the client and the
server are located on the same network.
c The completion of the request message is indicated in the servers via N_USData.ind.
d The functionally addressed servers are required to start with their response messages within P2CAN_Server after the
reception of N_USData.ind. This means that in case of multi-frame response messages, the FirstFrame shall be sent
within P2CAN_Server and, for single-frame response messages, that the SingleFrame shall be sent within P2CAN_Server.
e In the case of a multi-frame response message, the reception of the FirstFrame from any server is indicated in the
client via the N_USDataFF.ind of the network layer. A single-frame response message is indicated via N_USData.ind.
f When receiving the FirstFrame/SingleFrame indication of an incoming response message, the client either stops its
P2CAN_Client where it knows the servers expected to respond and all servers have responded, or it restarts its P2CAN_Client
timer where not all expected servers have yet responded or where the client does not know the servers expected to
respond (the client awaits the start of further response messages). The network layer of the client will generate a final

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 17

N_USData.ind in case the complete message is received or an error occurred during the reception. The reception of a
final N_USData.ind of a multi-frame message in the client will not have any influence on the P2CAN_Client timer.
g The completion of the transmission of the response message will also be indicated in the servers via N_USData.con.

Figure 7 — Functional communication during default session

6.3.5.2.2 Functional communication during defaultSession with enhanced response timing

Figure 8 graphically depicts the timing handling in the client and two (2) servers for a functionally addressed
request message during the default session, where one server requests an enhanced response timing via a
negative response message including response code 78 hex.

From a server point of view there is no difference in the timing handling compared to a physically addressed
request message that requires enhanced response timing, but the client shall handle the timing differently
compared to physical communication.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

18 © ISO 2004 – All rights reserved

a The diagnostic application of the client starts the transmission of the functionally addressed request message by
issuing a N_USData.req to its network layer. The network layer transmits the request message to the servers. A
functionally addressed request message shall only be a single-frame message.
b The completion of the request message is indicated in the client via N_USData.con. When receiving N_USData.con,
the client starts its P2CAN_Client timer, using the default reload value P2CAN_Client. As for physical communication, the value
of the P2CAN_Client timer shall consider any latency that is involved based on the vehicle network design (communication
over gateways, bus bandwidth, etc.). For simplicity, the figure assumes that the client and the server are located on the
same network.
c The completion of the request message is indicated in the servers via N_USData.ind.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 19

d The functionally addressed servers are required to start with their response messages within P2CAN_Server after the
reception of N_USData.ind. This means that, in the case of a multi-frame response message, the FirstFrame shall be sent
within P2CAN_Server and, for single-frame response messages, that the SingleFrame shall be sent within P2CAN_Server. In
case any of the addressed servers cannot provide the requested information within the P2CAN_Server response timing, it
can request an enhanced response timing window by sending a negative response message including response code 78
hex.
e Upon reception of the negative response message within the client, the client network layer generates a
N_USData.ind. The reception of a negative response message with response code 78 hex causes the client to restart its
P2CAN_Client timer, using the enhanced reload value P2*CAN_Client. In addition, the client shall store a server identification in
a list of pending response messages. Once a server that is stored as pending in the client starts with its final response
message (positive or negative response message including a response code other than 78 hex), it is deleted from the list
of pending response messages. Where no further response messages are pending, the client re-uses the default reload
value for its P2CAN_Client timer. For simplicity, the figure shows only a single negative response message including
response code 78 hex from server #1.
f As long as there is at least one server stored as pending in the client, any start of a further response message from
any server that was addressed by the request will cause a restart of the P2CAN_Client timer using the enhanced reload
value P2*CAN_Client. (In Figure 9, this is shown when the client receives the start of the response message of the second
server.)
g As for physical communication, the server that requested enhanced response timing is required to start with its
response message within the enhanced P2CAN_Server (P2*CAN_Server). Once the server can provide the requested
information, it starts with its final response message by issuing a N_USData.req to its network layer. When the server can
still not provide the requested information within the enhanced P2*CAN_Server, then a further negative response message
including response code 78 hex can be sent. This will cause the client to restart its P2CAN_Client timer again, using the
enhanced reload value P2*CAN_Client. A negative response message including response code 78 hex from a server that is
already stored in the list of pending response messages has no affect to the client internal list of pending response
message.
h As described in 6.3.5.2.1, in the case of a multi-frame response message the reception of the FirstFrame from any
server is indicated in the client via the N_USDataFF.ind of the network layer. A single-frame response message is
indicated via N_USData.ind. When receiving the FirstFrame/SingleFrame indication of an incoming response message,
the client either stops its P2CAN_Client in the case where it knows the servers to be expected to respond and all servers
have responded, or restarts its P2CAN_Client timer in the case where not all expected servers have yet responded or the
client does not know the servers to be expected to respond (client awaits the start of further response messages).
i The network layer will generate a final N_USData.ind in case any multi-frame response message is completely
received or an error occurred during the reception. This will not have any influence on the P2CAN_Client timer. Furthermore,
the handling of the list of pending response messages as described above applies.
j The completion of the transmission will also be indicated in the servers via N_USData.con.

Figure 8 — Functional communication during default session – enhanced response timing

6.3.5.2.3 Functional communication during non-default session

Figure 9 graphically depicts the timing handling in the client and two (2) servers for a functionally addressed
request message during the non-default session (e.g. programmingSession), where one server requests an
enhanced response timing via a negative response message including response code 78 hex.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

20 © ISO 2004 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 21

a The diagnostic application of the client starts the transmission of the functionally addressed DiagnosticSessionControl
(10 hex) request message by issuing a N_USData.req to its network layer. The network layer transmits the request
message to the servers. The request message is a single-frame message.
b The completion of the request message is indicated in the client via N_USData.con. Now the response timing as
described in 6.3.5.2.1 and 6.3.5.2.2 applies. In addition, the generated N_USData.con in the client causes the start of the
S3Client timer (session timer).
c The completion of the request message is indicated in the servers via N_USData.ind. Now the response timing as
described in 6.3.5.2.1 and 6.3.5.2.2 applies.
d For the figure as given, it is assumed that the client requires a response from the servers. The servers have to
transmit the DiagnosticSessionControl (10 hex) positive response messages.
e The completion of the transmission of the positive response message is indicated in the servers via N_USData.con.
The servers start their S3Server timers, which keeps the activated non-default session active as long as S3Server does not
time out. It is the client's responsibility to ensure that the S3Server timer is reset prior to its timeout, in order to keep the
servers in the non-default session.
f Once the S3Client timer is started in the client, this causes the transmission of a functionally addressed TesterPresent
(3E hex) request message, which does not require a response message each time the S3Client timer times out.
g Upon the indication of the completed transmission of the TesterPresent (3E hex) request message via N_USData.con
of its network layer, the client once again starts its S3Client timer. This means that the functionally addressed
TesterPresent (3E hex) request message is sent on a periodic basis every time S3Client times out.
h Any time a server is in the process of handling any diagnostic service, it stops its S3Server timer.
i When the diagnostic service is completely processed, then the server restarts its S3Server timer. A diagnostic service
is meant to be in progress any time between the start of the reception of the request message (N_USDataFF.ind or
N_USData.ind receive) and the completion of the transmission of the final response message, where a response message
is required, or the completion of any action that is caused by the request, where no response message is required (point in
time reached that would cause the start of the response message).
j Any TesterPresent (3E hex) request message that is received during processing of another request message can be
ignored by the server, because it has stopped its S3Server timer and will restart it once the other service is processed
completely.

Figure 9 — Functional communication during non-default session

The handling of the P2CAN_Client and P2CAN_Server timing is identical to the handling as described in 6.3.5.2.1
and 6.3.5.2.2, the only exception being that the reload values on the client side and the resulting time the
server shall send its final response time might differ. This is based on the transition into a session other than
the default session where different P2CAN_Client timing parameters might apply (see DiagnosticSessionControl
(10 hex) service in 9.2.1 for details on how the timing parameters are reported to the client).

6.3.5.3 Minimum time between client request messages

The minimum time between request messages transmitted by the client is required in order to allow for a
polling driven service data interpretation in the server, for example. Based on its normal functionality, a server
might process diagnostic request messages with a certain scheduling rate (e.g. 10 ms). The time for the
diagnostic service data interpretation scheduler shall be smaller than the performance requirement
P2CAN_Server in order to meet the server requirements of 6.3.5 and 6.3.5.1.3.2.

The timing parameter for the minimum time between request message is divided into the following two timing
parameters.

 P3CAN_Functional: this timing parameter applies to any functionally addressed request message, because it
can be the case that a server is not required to respond to a functionally addressed request message if it
does not support the requested data.

 P3CAN_Physical: this timing parameter applies to any physically addressed request message where there is
no response required to be transmitted by the server (suppressPosRspMsgIndicationBit = TRUE).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

22 © ISO 2004 – All rights reserved

In the case of physical communication where a response is required by the server, the client can transmit the
next request immediately after the complete reception of the last response message, because the server has
responded completely to the request — which means that the request is completely handled by the server.

Figure 10 graphically depicts an example of a problem that can occur during functional communication, when
the client transmits the next request immediately after it has determined that all expected servers responded
to a previous request message.

This scenario not only applies to functionally addressed requests but also to physically addressed requests
where the client does not want to receive any response message (suppressPosRspMsgIndicationBit = TRUE).

In order to handle the described scenarios, the minimum times P3CAN_Physical and P3CAN_Functional, between
the end of a physically or functionally addressed request message and the start of a new physically or
functionally addressed request message, are defined for the client.

a) The value of P3CAN_Physical will be identical to P2CAN_Server_max for the physically addressed server. The
timing applies to any physically addressed request message in any diagnostic session (default and non-
default session) and in case no response is required by the server.

The P3CAN_Physical timer is started in the client each time a physically addressed request message with
no response required is successfully transmitted onto the bus, which is indicated via N_USData.con in the
client. When the client wants to transmit a new physically addressed request message following a
previous request that was completely handled, then this is only allowed in case the P3CAN_Physical timer is
no longer active at the time the client wants to transmit the physically addressed request message. In
case P3CAN_Physical would still be active at the point in time the client would like to transmit a new
physically addressed request message, then the transmission shall be postponed until P3CAN_Physical is
timed out.

b) The value of P3CAN_Functional will be the maximum (worst-case) value of all functionally addressed
server's P2CAN_Server_max for any functionally addressed request message in any diagnostic session
(default and non-default session).

The P3CAN_Functional timer is started in the client each time a functionally addressed request message
with response required or with no response required is successfully transmitted onto the bus, which is
indicated via N_USData.con in the client. When the client wants to transmit a new functionally addressed
request message following a previous request that was completely handled, then this is only allowed in
case the P3CAN_Functional timer is no longer active at the time the client wants to transmit the functionally
addressed request message. In case P3CAN_Functional would still be active at the point in time the client
would like to transmit a new functionally addressed request message, then the transmission shall be
postponed until P3CAN_Functional is timed out.

NOTE “Completely handled” means that either no response is received in case no response is required, all expected
responses to a functionally addressed request are received in case the responding servers are known and responses are
required or a P2CAN_Client timeout occurred in case the responding servers are not known and responses are required.

The requirement for the server is that it shall start with its response message within P2CAN_Server (see 7.3).
This means that the diagnostic data interpretation rate of the server shall be less than P2CAN_Server.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 23

a The diagnostic application of the client starts the transmission of a functionally addressed request message by issuing
a N_USData.req to its network layer. The network layer transmits the request to the servers.
b The completion of the request message is indicated in the client via N_USData.con. The client starts its P2CAN_Client
timer, using the default reload value P2CAN_Client.
c The completion of the request message is indicated in the server via N_USData.ind. The server starts its P2CAN_Server
timer, using the default reload value P2CAN_Server.
d For the request message, it is assumed that only server #1 supports the requested information, which means that
there will be no response message from server #2. Server #1 is a fast server and can immediately process the received
request message and transmits its response within P2CAN_Server.
e The client receives the response message. This is indicated via N_USData.ind. The client only expected a response
message from server #1, therefore it stops its timer P2CAN_Client.
f Server #2 is a slow server and interprets received requests on a periodic basis (diagnostic service data interpretation
rate). In the worst-case, the last check for incoming request a message is prior to the network layer reception of the
functionally addressed request message. This would mean that the request would be stored in a buffer and processed at
the earliest the next time the scheduler checks for an incoming request. When server #2 processes the request, then it
determines that it does not need to answer, because it does not support the requested information. As shown in the figure,
this would be after the completion of the response message of server #1, and even after the completion of the next
request message transmitted by the client.
g The client would send the next request right after the completion of all expected response messages
h The completion of the request message is indicated in the servers via N_USData.ind, but only processed by the fast
server #1, because server #2 did not yet handle the last request.
i The completion of the new request is indicated in the client via N_USData.con.

Figure 10 — Example of critical issue when transmitting next request too early

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

24 © ISO 2004 – All rights reserved

Figure 11 graphically depicts the P3CAN_Functional timing handling for the client (based on the communication
scenario illustrated by Figure 10). In addition, Figure 11 shows the handling of a functionally addressed
TesterPresent (3E hex) request message in the client in the case in which the P3CAN_Functional timer is still
active when S3Client times out (request will be postponed until P3CAN_Functional times out).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 25

a The diagnostic application of the client starts the transmission of a functionally addressed request message by issuing
a N_USData.req to its network layer. The network layer transmits the request to the servers.
b The completion of the request message is indicated in the client via N_USData.con. The client starts its P2CAN_Client
timer and, furthermore, its timer P3CAN_Functional.
c The completion of the request message is indicated in the servers via N_USData.ind.
d For the request message, it is assumed that only server #1 supports the requested information, which means that
there will be no response message from server #2. Server #1 is a fast server and can immediately process the received
request message and transmits its response within P2CAN_Server.
e Once the client receives the response message, this is indicated via N_USData.ind. The client only expected a
response message from server #1, therefore it stops its timer P2CAN_Client.
f Server #2 is a slow server and interprets received requests on a periodic basis (diagnostic service data interpretation
rate). In the worst-case, the last check for incoming request messages is just prior to the network layer reception of the
functionally addressed request message. This would mean that the request would be stored in a buffer and be processed
at the earliest the next time the scheduler checks for an incoming request. When server #2 processes the request, then it
determines that it does not need to answer, because it does not support the requested information.
g Even if the client has received all expected response messages to a functionally addressed request message, it shall
wait until P3CAN_Client times out before it is allowed to transmit the next request message. At the point in time P3CAN_Client
times out, the client transmits the next request message.
h This new request is indicated in the servers via N_USData.ind and processed immediately by server #1, while server
#2 processes the request the next time the scheduler checks for incoming request messages.

i The completion of the new request is indicated in the client via N_USData.con and starts the P3CAN_Functional timer in
the client.
j For the request message it is also assumed that only server #1 supports the requested information, which means that
there will be no response message from server #2. Server #1 is a fast server and can immediately process the received
request message and transmits its response within P2CAN_Server.
k Once the client receives the response message, this is indicated via N_USData.ind. The client only expected a
response message from server #1, therefore it stops its timer P2CAN_Client.
l Server #2 is a slow server and interprets received requests on a periodic basis (diagnostic service data interpretation
rate). This would mean that the request would be stored in a buffer and be processed at the earliest the next time the
scheduler checks for an incoming request. When server #2 processes the request, then it determines that it does not need
to answer, because it does not support the requested information.
m The S3Client timer of the client times out, which forces the client to transmit a functionally addressed TesterPresent (3E
hex) request message, not requiring a response message from the addressed server(s). Based on the situation in which
the P3CAN_Functional timer is still active at this point in time, the transmission of the TesterPresent (3E hex) shall be
postponed until the expiration of the timer P3CAN_Functional.
n When the P3CAN_Functional timer times out, the functionally addressed TesterPresent (3E hex) request can be
transmitted by the client via N_USData.req.
o The reception of the TesterPresent (3E hex) request message is indicated in the servers via N_USData.ind.
p The completion of the TesterPresent (3E hex) request is indicated in the client via N_USData.con and starts the
P3CAN_Functional timer in the client.

Figure 11 — Minimum time between functionally addressed request messages (P3CAN_Functional)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

26 © ISO 2004 – All rights reserved

Figure 12 graphically depicts the P3CAN_Physical timing handling for the client. The figure shows the handling of
a physically addressed request that does not require a response, and of the functionally addressed
TesterPresent (3E hex) request message in the client when S3Client times out.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 27

a The diagnostic application of the client starts the transmission of a physically addressed request message by issuing a
N_USData.req to its network layer. The network layer transmits the request to the server.
b The completion of the request message is indicated in the client via N_USData.con. The client now starts its
P3CAN_Physical timer. There is no response required to be transmitted, therefore the client does not need to start its
P2CAN_Client timer.
c The completion of the request message is indicated in the servers via N_USData.ind. In any non-default session, the
S3Server timer is now stopped.
d The server interprets received requests on a periodic basis (diagnostic service data interpretation rate). The request is
processed the next time the scheduler checks for incoming requests. The completed execution of the service would restart
the S3Server timer during any non-default session.
e The S3Client timer of the client times out, which forces the client to transmit a functionally addressed TesterPresent (3E
hex) request message, not requiring a response message from the addressed server(s).
f It is assumed that the P3CAN_Functional timer is no active at this point in time, which means that the request is
transmitted immediately.
g The completion of the TesterPresent (3E hex) request message is indicated via N_USData.con in the client.
h The reception of the TesterPresent (3E hex) request message is indicated in the servers via N_USData.ind. At this
point in time, the previous received physical request is still pending in the server (not yet processed) and the S3Server
timer is stopped. Therefore, the received TesterPresent (3E hex) request message can be ignored by the server.
i When the P3CAN_Physical timer times out in the client, then the client can transmit the next physically addressed
request message by issuing N_USData.req to its network layer.
j The completion of the physically addressed request message is indicated in the client via N_USData.con. The client
now starts its P3CAN_Physical timer again. There is no response required to be transmitted, therefore the client does not
need to start its P2CAN_Client timer.
k The completion of the request message is indicated in the servers via N_USData.ind. In any non-default session, the
S3Server timer is now stopped.

Figure 12 — Minimum time between physically addressed request messages (P3CAN_Physical)

6.3.5.4 Unsolicited response messages

Unsolicited messages are those transmitted by the server(s) based on either a periodic scheduler (see service
ReadDataByPeriodicIdentifier in 9.3.4) or a configured trigger, such as a change of a DTC status or a
dataIdentifier value change (see service ResponseOnEvent in 9.2.8).

Any unsolicited transmitted response message shall not reset the S3Server timer in the server. This avoids a
diagnostic session keep-alive latch-up effect in the server for cases where a periodic message transmission is
active or a timer-triggered event is configured in the server where the time interval between the events is
smaller than S3Server. The S3Server timer shall only be reset if the transmitted response message is the direct
result of processing a request message and transmitting the final response message (such as the initial
positive response that indicates that a request to schedule one or more periodicDataIdentifiers is performed
successfully).

NOTE For the requirements for transmission of unsolicited response messages, see 9.3.4 and 9.2.8.

6.3.6 Error handling

Error handling for the application layer and session management to be fulfilled by the client and the server
during physical and functional communication shall be in accordance with Tables 7 and 8, in respect of which
it is assumed that the client and the server implement the application and session layer timing according to
this part of ISO 15765.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

28 © ISO 2004 – All rights reserved

Table 7 — Client error handling

Client handling Communication
phase

Client error
type Physical communication Functional communication

Request
transmission

N_USData.con
from network
layer with a
negative result
value.

The client shall repeat the last request,
after the time P3CAN_Physical following
the error indication.

Restart S3Client in the case of a
physically addressed and sequentially
transmitted TesterPresent (because
S3Client has been stopped based on
the request message transmission).

The client shall repeat the last request,
after the time P3CAN_Functional following
the error indication.

Where the client does not know the
number of servers responding, then
this is the indication for the client that
no further response messages are
expected. No retry of the request
message is required.

The client shall completely receive all
response messages that are in
progress until it can continue with
further requests.

P2CAN_Client

P2*CAN_Client
Timeout

The client shall repeat the last request.

Restart S3Client in the case of a
physically addressed and sequentially
transmitted TesterPresent (because
S3Client has been stopped based on the
request message transmission).

Where the client knows the number of
responding servers, then this is the
indication for the client that not all
expected servers responded.

The client shall repeat the request after
it has completely received any
response message that is in progress
at the point in time the timeout occurs.

Response
reception

N_USData.ind
from network
layer with a
negative result
value.

The client shall repeat the last request.

Restart S3Client in the case of a
physically addressed and sequentially
transmitted TesterPresent (because
S3Client has been stopped based on the
request message transmission).

The client shall repeat the last request
after it has completely received any
response message that is in progress
at the point in time the error has been
indicated.

The client error handling defined shall be performed for a maximum of two (2) times, which means that the worst-case
of service request transmissions is three (3).

Table 8 — Server error handling

Communication
phase

Server error type Server handling

Request
reception

N_USData.ind from network
layer with a negative result
value.

Restart S3Server timer (because it has been stopped based on
the previously received FirstFrame indication). The server shall
ignore the request.

P2CAN_Server
P2CAN_Client
P2*CAN_Client

Timeout N/A

Response
transmission

N_USData.con from network
layer with a negative result
value.

Restart S3Server timer (because it has been stopped based on
the previously received request message). The server shall not
perform a retransmission of the response message.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 29

7 Network layer interface

7.1 General information

This part of ISO 15765 makes use of the network layer services defined in ISO 15765-2 for the transmission
and reception of diagnostic messages. This section defines the mapping of the Application layer protocol data
units (A_PDU) onto the Network layer protocol data units (N_PDU).

NOTE The network layer services are used to perform the application layer and diagnostic session management
timing (see 6.3).

7.2 FlowControl N_PCI parameter definition

The client shall not use the values of F1 hex – F9 hex for the Stmin parameter. These Stmin parameter values
shall be supported by the server(s) if requested by the vehicle manufacturer.

7.3 Mapping of A_PDU onto N_PDU for message transmission

The parameters of the application layer protocol data unit defined to request the transmission of a diagnostic
service request/response are mapped in accordance with Table 9 onto the parameters of the network layer
protocol data unit for the transmission of a message in the client/server.

The network layer confirmation of the successful transmission of the message (N_USData.con) is forwarded
to the application, because it is needed in the application for starting those actions, which shall be executed
immediately after the transmission of the request/response message (ECUReset, BaudrateChange, etc.).

Table 9 — Mapping of ServiceName.request/ServiceName.response A_PDU
onto N_USData.request N_PDU

A_PDU parameter
(Application Protocol

Data Unit)
Description

N_PDU parameter
(Network Protocol

Data Unit)
Description

A_SA Application Source Address N_SA Network Source Address

A_TA Application Target Address N_TA Network Target Address

A_Tatype Application Target Address
type

N_Tatype Network Target Address type

A_RA Application Remote Address N_AE Network Address Extension

A_PCI.SI Application Protocol Control
Information Service Identifier

N_Data[0] Network Data

A_Data[0] – A_Data[n] Application Data N_Data[1] N_Data[n+1] Network Data

7.4 Mapping of N_PDU onto A_PDU for message reception

The parameters of the network layer protocol data unit defined for the reception of a message are mapped in
accordance with Table 10 onto the parameters of the application layer protocol data unit for the
confirmation/indication of the reception of a diagnostic response/request.

The network layer indication for the reception of a FirstFrame N_PDU (N_USDataFirstFrame.ind) is not
forwarded to the application, because it is only used within the application layer to perform the application
layer timing (see 6.3). Therefore, no mapping of the N_USDataFirstFrame.ind N_PDU onto an A_PDU is
defined.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

30 © ISO 2004 – All rights reserved

Table 10 — Mapping of N_USData.ind N_PDU onto ServiceName.conf/ServiceName.ind A_PDU

N_PDU parameter
(Network Protocol

Data Unit)
Description

A_PDU parameter
(Application Protocol

Data Unit)
Description

N_SA Network Source Address A_SA Application Source Address

N_TA Network Target Address A_TA Application Target Address

N_TAtype Network Target Address type A_TAtype Application Target Address type

N_AE Network Address Extension A_RA Application Remote Address

N_Data[0] Network Data A_PCI.SI Application Protocol Control
Information Service Identifier

N_Data[1] N_Data[n+1] Network Data A_Data[0] - A_Data[n] Application Data

8 Standardized diagnostic CAN identifiers

8.1 Legislated 11 bit OBD CAN identifiers

The 11 bit CAN identifiers for legislated OBD can also be used for enhanced diagnostics (e.g. the functional
request CAN Id can be used for the functionally addressed TesterPresent (3E hex) request message to keep
a non-defaultSession active).

If the 11 bit CAN Identifiers as specified in ISO 15765-4 are re-used for enhanced diagnostics, then the
following requirements apply:

a) network layer timing parameters according ISO 15765-4 shall also apply for enhanced diagnostics;

b) the DLC (CAN data length code) shall be set to eight (8) and the CAN frame shall include eight (8) bytes
(unused bytes shall be padded).

NOTE ISO 15765-4 allows for max. 8 OBD related servers (ECUs); therefore, 11 bit CAN identifiers for max. 8
servers are defined.

8.2 Legislated 29 bit OBD CAN identifiers

The 29 bit CAN identifiers for legislated OBD comply with the Normal fixed addressing format specified in
ISO 15765-2 and can also be used for enhanced diagnostics.

If the 29 bit CAN Identifiers as specified in ISO 15765-4 are re-used for enhanced diagnostics, then the
following requirements apply:

a) network layer timing parameters as specified in ISO 15765-4 shall also apply for enhanced diagnostics;

b) the DLC shall be set to eight (8) and the CAN frame shall include eight (8) bytes (unused bytes shall be
padded).

NOTE The CAN identifier values given in the tables use the default value for the priority information in accordance
with ISO 15765-2.

8.3 Enhanced diagnostics 29 bit CAN identifiers

8.3.1 General information

This section specifies a standardized addressing and routing concept for CAN using 29 bit identifiers. The
concept makes use of the well-known and approved mechanisms of the internet protocol (IP). By this means,

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 31

standardized algorithms for addressing and routing can be used for all nodes in the whole network
independent of their positioning in subnetworks.

This addressing and routing concept provides the following features:

 maximum flexibility during the design process of network structures,

 full customization of network and node address,

 the possibility of CAN controller hardware filter feature optimization by the assignment of the appropriate
network and node address,

 gateways need to know only network addresses of the connected sub-networks instead of all addresses
of their sub-network members.

The following specifies the technical details of the CAN identifier structure, the structure of addresses, and
subnet masks. A detailed description of the algorithms used for routing and broadcasting is also included.

8.3.2 Structure of 29 bit CAN identifier

The 29 bit CAN identifier structure specified in this document is compatible in regard to coexistence with the
definitions in ISO 15765-2, ISO 15765-3 and ISO 15765-4 and with SAE J1939-21. Therefore, the encoding of
bit 25 (Reserved/Extended Data Page) and bit 24 (Data Page) in the 29 bit CAN identifier structure defined in
SAE J1939-21 shall be used to determine whether a CAN identifier and frame is of SAE J1939 or ISO 15765
format. This enables the vehicle network designer to define non-diagnostic messages and associated CAN
identifiers customized according to his needs or to utilize and benefit from the definitions in SAE J1939 in
combination with a diagnostic services implementation as defined in ISO 15765-2, ISO 15765-3 and
ISO 15765-4.

8.3.2.1 Structure of SAE J1939 29 bit CAN identifier

For information about the structure of the SAE J1939 29 bit CAN identifier format, see Table 11.

Table 11 — SAE J1939 structure of 29 bit CAN identifiers

29 bit CAN identifier

28 27 26 25 24 23 16 15 8 7 0

Priority
Reserved/
Extended
data page

Data
page PDU Format

PDU-specific
(destination or PDU format

extension)

Source address
(unique source address)

8.3.2.2 Structure of ISO 15765 29 bit CAN identifier

Table 12 shows the structure of ISO 15765 CAN identifier that can be distinguished from the SAE J1939
format through the “SAE J1939 Reserved/Extended Data Page and ISO 15765 Extended Data Page” bit 25
and the “SAE J1939 Data Page ISO 15765 Data Page” bit 24. Thus, ISO 15765-formatted and SAE J1939-
formatted 29 bit CAN identifiers can coexist on the same physical CAN bus system without interference.

Table 12 — ISO 15765 structure of 29 bit CAN identifiers

29 bit CAN identifier

28 27 26 25 24 23 22 21 11 10 0

Priority Extended
data page

Data
page

Type of
service (TOS) Source address Destination address

 Encoding see
8.3.2.4

Encoding see
8.3.2.5

Unique source address,
see 8.3.3

Unique destination address,
see 8.3.3

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

32 © ISO 2004 – All rights reserved

8.3.2.3 Priority field

The priority field is defined as specified in SAE J1939, to make use of the arbitration mechanism of CAN.
Because the CAN identifier can no longer be assigned freely (source and target address are included in CAN
identifier), the priority of a CAN message would be assigned by the sender (source address) and the receiver
(target address) of that message indirectly. Eight (8) different priority levels are possible.

Priority level 6 (110b) shall be assigned to diagnostic request messages/frames.

8.3.2.4 Extended Data Page and Data Page field

The Extended Data Page and Data Page bits determine which format of the 29 bit CAN identifier shall be
used. Table 13 specifies the encoding.

Table 13 — Definition of Extended Data Page and Data Page field

Extended data page bit 25 Data page bit 24 Description

0 0 SAE J1939-defined or manufacturer-defined “Normal Communication Message”
strategy if SAE J1939 is not implemented

0 1 SAE J1939-defined or manufacturer-defined “Normal Communication Message”
strategy if SAE J1939 is not implemented

1 0 SAE J1939-reserved or manufacturer-defined “Normal Communication Message”
strategy if SAE J1939 is not implemented

1 1 ISO 15765-3-defined

8.3.2.5 Type of service (TOS) field

The type of service field is used to be able to address different services of a node without having to assign
different addresses to it. Thus, eight (8) different service types of a node can be addressed concurrently using
a single destination address. The different types of services and their usage are defined in Table 14.

Table 14 — Definition of Types Of Service (TOS)

Bit 23 Bit 22 Type Of Service (TOS) Description

0 0 ISO reserved This bit combination is reserved for future use by ISO.

0 1 OEM-defined messages
This bit combination indicates that the messages are OEM-specific. A combination of
ISO 15765-3 and legacy protocol messages can be used to support a mixture of
servers on the same network with different protocol messages.

1 0
Network control message

protocol / network
management

This bit combination indicates that the frame(s) contain data sent and received by
gateways to supply information about the current state of subnets (e.g. network
unreachable, network overload) and nodes (e.g. host unreachable).

1 1 ISO 15765-3-defined
messages

This bit combination indicates an ISO 15765-3-defined diagnostic service addressed
to a node. The user data bytes of the CAN frame contain diagnostic requests
(ISO 15765-3) using the network layer services and transport layer defined in
ISO 15765-2.

8.3.2.6 Source address

The source address contains the address of the sending entity. This information ensures the correct
arbitration and can be used by the receiver of a message to address its replies. The structure of the source
address is described in 8.3.3.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 33

8.3.2.7 Destination address

The destination address contains the address of the receiving entity. This can be a single node, the broadcast
address of a network or a generic broadcast. The destination address is used by gateways to determine
whether the CAN frame shall be routed to another CAN bus or not. The structure of the target address is
described in 8.3.3.

8.3.3 Structure of address

8.3.3.1 General information

The source and destination addresses are encoded in the 29 bit CAN identifier with a length of 11 bits each. In
the following subclauses, the letters “X” and “Y” are used to represent a variable parameter.

8.3.3.2 Definition of address

An address consists of two parts.

a) Network address

The network address part consists of the first “X” sequential bits of the address and determines a node's
network. The same network address shall be assigned to the nodes on one physical bus. The network
address part shall not have all bits set to one (1). Thus, the minimum length for the network address part
is two (2) bits. The maximum length is nine (9) bits because at least two (2) bits are needed to provide
valid node address parts. The maximum number of possible subnets can be calculated as follows:

2X − 1 (where X is the number of bits used for the network address part)

b) Node address

The node address part consists of the remaining “Y” (Y = 11 – X) sequential bits of the address and
determines the node within a subnet. It shall be unique within the subnet. All bits set to zero (0) and all bits
set to one (1) are not allowed. Thus, the minimum length of the node address part is two (2) bits. The
maximum length is nine (9) bits because at least two (2) bits are needed for the network address part. The
maximum number of nodes per sub-network can be calculated as follows:

2Y − 2 (where Y is the number of bits used for the node address part)

A node is assigned a unique address that shall be stored in the node’s internal memory. A node shall receive
messages with the node’s assigned address in the destination address field.

Table 15 presents an example for source and destination addresses. The sending and the receiving nodes
are on different sub-networks.

Table 15 — Example for source and destination address

29 bit CAN identifier

28 27 26 25 24 23 22 21 11 10 0

Priority
0x6

ISO 15765
format

Type of service
ISO 15765-3
messages

Source address
0x2ED

Destination address
0x32F

1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

34 © ISO 2004 – All rights reserved

8.3.3.3 Subnet mask

The subnet mask assigns the number of bits used for the network address part and for the node address part.

The length of the subnet mask is 11 bits (same as the length of the address). The value of a subnet mask is
assigned by setting the first “X” sequential bits set to one (1). The number of sequential bits set to one (1)
selects the network address part from the whole address. The remaining sequential bits set to zero (0) select
the node address part from the whole address (see Table 16 and Table 17 for examples of subnet masks for
sender and receiver).

Due to the fixed length of a subnet mask and the first “X” sequential bits set to one (1), only the number of bits
set to one (1) needs to be stored instead of the whole bit mask. Thus, a short notation is used to define a
subnet mask.

Table 16 — Example for sender’s subnet mask

Subnet mask

10 9 8 7 6 5 4 3 2 1 0

0x7C0 (short notation: /5)

Network address part Node address part

1 1 1 1 1 0 0 0 0 0 0

Table 17 — Example for receiver’s subnet mask

Subnet mask

10 9 8 7 6 5 4 3 2 1 0

0x7E0 (short notation: /6)

Network address part Node address part

1 1 1 1 1 1 0 0 0 0 0

Each node is assigned a subnet mask that shall be stored in its internal memory. Nodes of the same subnet
are assigned the same subnet mask.

8.3.3.4 Network address

The network address of a node can now be calculated using its assigned address and subnet mask.
Therefore, a simple bit by bit AND operation of address and subnet mask shall be performed. See Tables 18
and 19 for examples of determining the network address of sender and receiver.

Table 18 — Example for sender’s network address

Source address

Bit 10 9 8 7 6 5 4 3 2 1 0

Address: 0x2ED 0 1 0 1 1 1 0 1 1 0 1

Subnet mask: /5 1 1 1 1 1 0 0 0 0 0 0

Network address: 0x2C0 0 1 0 1 1 0 0 0 0 0 0

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 35

Table 19 — Example for receiver’s network address

Destination address

Bit 10 9 8 7 6 5 4 3 2 1 0

Address 0x32F 0 1 1 0 0 1 0 1 1 1 1

Subnet mask: /6 1 1 1 1 1 1 0 0 0 0 0

Network address: 0x320 0 1 1 0 0 1 0 0 0 0 0

To describe a subnet, its network address and subnet mask are noted in the following form:

<network address> / <short subnet mask notation>

For the given examples this results in

sender’s subnet: 0x2C0 / 5

receiver’s subnet: 0x320 / 6

This information is used by gateways for routing.

8.3.3.5 Broadcast address

8.3.3.5.1 Generic broadcast (0x7FF)

The generic broadcast allows for broadcasting messages to all nodes of a network. To send a broadcast to
the whole network, the target address 0x7FF [all bits set to one (1)] shall be used. A message with that target
address will be routed by all gateways. All nodes on the network shall receive and process messages with
destination address 0x7FF.

8.3.3.5.2 Subnet broadcast

The subnet broadcast is intended to be used for broadcasting messages to the nodes of a specific sub-
network. To send a broadcast to a specific subnet, the broadcast address of that subnet shall be calculated.
This is done by taking the destination's subnet information (network address and subnet mask) and setting all
node address part bits [marked with zero (0) in subnet mask] to one (1). See Table 20 for a subnet broadcast
example for the receiver’s subnet.

Table 20 — Example for subnet broadcast to receiver’s network

Destination address

Bit 10 9 8 7 6 5 4 3 2 1 0

Network address: 0x320 0 1 1 0 0 1 0 0 0 0 0

Subnet mask: /6 1 1 1 1 1 1 0 0 0 0 0

Broadcast address: 0x33F 0 1 1 0 0 1 1 1 1 1 1

Subnet broadcast messages are normally routed by gateways.

All nodes have to receive messages with the network address part equal to their own network address part
and all bits set to “1” in the node address part of the destination address field.

8.3.4 Message retrieval

Each node on a subnet compares the destination address of a CAN frame with its own address. If those
match, the information contained is transferred to the next higher layer in the OSI model for further
processing.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

36 © ISO 2004 – All rights reserved

8.3.5 Routing

8.3.5.1 General information

Routing applies whenever nodes from physically disconnected subnets communicate with each other and
their CAN frames have to be transferred from one subnet to another subnet. This is performed by additional
nodes, which are physically connected to the network where the CAN frame is received and the network
where the CAN frame shall be transmitted to, to reach its destination. Thus, a CAN frame may pass several
gateways from its source subnet to its destination.

8.3.5.2 Network and subnet structure

Generally, networks can be designed as needed when the following restrictions are respected:

 addresses shall be unique;

 all nodes in a subnet have the same subnet mask;

 all nodes in a subnet have the same network address;

 whenever a network address is assigned to a subnet, no further network addresses in that address scope
may be assigned to other networks, as this would result in a routing problem.

Figure 13 shows a configuration with four (4) subnets connected to a gateway. Three (3) subnets are
connected through one gateway and the 4th subnet is connected through an additional gateway.

Figure 13 — Network configuration example

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 37

8.3.5.3 Gateways and routing

8.3.5.3.1 Description

Gateways are nodes connected to more than one subnet and therefore able to transfer CAN frames from one
subnet to another.

8.3.5.3.2 Ports

A port is the connection of a gateway to one physical subnet. A gateway shall have at least two (2) ports.
Each port is assigned a network address and subnet mask of the subnet it is connected to.

In Figure 13, the configuration includes two (2) gateways, where gateway 1 has three ports and gateway 2
has two ports.

8.3.5.3.3 Routing table

To determine whether a CAN frame needs to be routed, a routing table shall be generated and stored in the
gateway’s memory. A routing entry contains the network address, subnet mask and the port on which the
subnet can be reached. Such an entry shall exist for each subnet that is connected (directly or indirectly)
through this gateway.

See Table 21 for the network shown in Figure 13. Through hierarchical design of the networks 640/6 and
650/6, the routing table entries can be reduced to one entry 640/5.

Table 21 — Routing table example

subnet (network address/subnet mask) port

Gateway 1
500/5 1
680/6 2
640/5 3

Gateway 2

500/5 1
680/6 1
650/6 1
640/6 2

8.3.5.3.4 Routing algorithm

A gateway receives all messages from the ports that are connected to the different subnets. If the gateway is
an addressable node, then only one address out of the address scopes of the subnets connected directly to
the ports of that gateway shall be assigned. An additional message retrieval check is performed before the
proper routing algorithm. If the destination address is 0x7FF, the message is copied to all ports except the one
on which the message was received. The normal routing algorithm is skipped.

After having received Message A, the routing steps shall be as shown in Figure 14.

8.3.5.3.5 Routing example

In Figure 15, a routing example is shown for a CAN message from the client with the address 0x51A to the
server with the address 0x642 using the routing information from Table 21.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

38 © ISO 2004 – All rights reserved

The following steps are performed by the gateways on reception of that message.

a) Gateway 1

1) Analysis of CAN-ID: DA = 0x642. See Tables 22 and 23.

Table 22 — Gateway 1 routing decision

Routing decision Network Port

(0x642 AND 0x7C0) = 0x640 != 500 → no local message → routing 500/5 1

Table 23 — Gateway 1 routing analysis

Routing analysis Network Port

0x642 AND 0x7E0 = 0x640 != 680 → next entry 680/6 2

0x642 AND 0x7C0 = 0x640 = 640 → correct path 640/5 3

2) Check of whether the message is addressed to gateway: 0x642 != 0x654.

3) Forwarding of message to port 3.

b) Gateway 2

1) Analysis of CAN-ID: DA = 0x642. See Tables 24 and 25.

Table 24 — Gateway 2 routing decision

Routing decision Network Port

0x642 AND 0x7C0 = 0x640 != 650 → no local message → routing 650/6 1

Table 25 — Gateway 2 routing analysis

Routing analysis Network Port

0x642 AND 0x7E0 = 0x640 = 640 → correct path 640/6 2

2) check whether the message is addressed to gateway: 0x642 != 0x641.

3) forward message to port 2.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 39

Steps
A Message received on port “X”.

1 Bit by bit logical AND operation is performed with destination address of the received message and subnet mask of
the port on which the message was received.

2 The result is compared with the network address of the port on which the message was received. The network
address of the port is either stored in the node’s memory or can be calculated using the address and subnet mask of that
port. If the result and the network address are equal, the received message is a local message of the port’s subnet and no
routing will apply (B). If the result and the port’s network address are different, a routing analysis shall be performed,
continuing with step 3.

3 A bit by bit logical AND operation is performed with destination address of the received message and the subnet mask
of the current routing table entry.

4 The result of the operation and the network address of the current routing table entry are compared. If those matches
the algorithm will continue with step 8, otherwise the algorithm will continue with step 5.

5 If there are additional routing table entries, the algorithm will continue with step 6. Otherwise no routing will apply (B).

6 The next routing table entry is selected and the algorithm jumps back to step 3.

7 The destination address of the message is compared with the gateway’s address on the current port. This step is only
needed if the gateway is an addressable node, otherwise the algorithm jumps directly to step 8. If the destination address
is the address of the gateway for the current port, the algorithm continues with step 9. If destination address and address
of the gateway are not equal, the algorithm is continued at step 8.

8 The message is sent on the port of the routing table entry that matched the network address of the destination
address.

9 The message was addressed to gateway node and thus, it is processed by application.

B End of routing algorithm.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

40 © ISO 2004 – All rights reserved

Key
DA destination address
GWAD gateway's address on port_X
NA network address
SM subnet mask
entry_X entry #X in the gateway's routing table
port_X port #X of the gateway

Figure 14 — Routing algorithm sequence chart

Key
 virtual connection

 message path on CAN bus

 message path in gateway

Figure 15 — Routing example from client 0x51A to server 0x642

9 Diagnostic services implementation

9.1 Unified diagnostic services overview

This clause defines how the diagnostic services as defined in ISO 14229-1 apply to CAN. For each applicable
service, the applicable subfunction and data parameters are defined.

NOTE The subfunction parameter definitions take into account that the most significant bit is used for the
suppressPosRspMsgIndicationBit parameter as defined in ISO 14229-1.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 41

The purpose of Table 26 is to provide an overview of all unified diagnostic services, as they are applicable for
an implementation of diagnostics on CAN. The table contains the sum of all applicable services. Certain
applications using this part of ISO 15765 to implement diagnostics on CAN may restrict the number of useable
services and may categorize them in certain application areas/diagnostic sessions (default session,
programming session, etc.).

Table 26 — Diagnostics on CAN -– Unified diagnostic services overview

Diagnostic service name
(ISO 14229-1)

Service Id
value
(hex)

Subfunction
supported

suppressPosRspMsgIndicationBit
= TRUE (1)

(No response) supported a

Subclause

Diagnostic and Communication Management Functional Unit

DiagnosticSessionControl 10 Yes Yes 9.2.1

ECUReset 11 Yes Yes 9.2.2

SecurityAccess 27 Yes Yes 9.2.3

CommunicationControl 28 Yes Yes 9.2.4

TesterPresent 3E Yes Yes 9.2.5

SecuredDataTransmission 84 — N/A 9.2.6

ControlDTCSetting 85 Yes Yes 9.2.7

ResponseOnEvent 86 Yes Yes 9.2.8

LinkControl 87 Yes Yes 9.2.9

Data Transmission Functional Unit

ReadDataByIdentifier 22 — N/A 9.3.1

ReadMemoryByAddress 23 — N/A 9.3.2

ReadScalingDataByIdentifier 24 — N/A 9.3.3

ReadDataByPeriodicIdentifier 2A — N/A 9.3.4

DynamicallyDefineDataIdentifier 2C Yes Yes 9.3.5

WriteDataByIdentifier 2E — N/A 9.3.6

WriteMemoryByAddress 3D — N/A 9.3.7

Stored Data Transmission Functional Unit

ReadDTCInformation 19 Yes Yes 9.4.1

ClearDiagnosticInformation 14 — N/A 9.4.2

Input/Output Control Functional Unit

InputOutputControlByidentifier 2F — N/A 9.5.1

Remote Activation Of Routine Functional Unit

RoutineControl 31 Yes yes 9.6.1

Upload/Download Functional Unit

RequestDownload 34 — N/A 9.7.1

RequestUpload 35 — N/A 9.7.2

TransferData 36 — N/A 9.7.3

RequestTransferExit 37 — N/A 9.7.4

a It is implied that suppressPosRspMsgIndicationBit = FALSE (0) is supported by each service that utilizes a subfunction
parameter. It is the system designer's responsibility to assure that in case the client does not require a response message
[suppressPosRspMsgIndicationBit = TRUE (1)] and the server might need more than P2CAN_Server to process the request message
that the client shall insert sufficient time between subsequent requests. There might be situations where a server is not able to perform
the requested action nor being able to indicate the reason to the client.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

42 © ISO 2004 – All rights reserved

9.2 Diagnostic and communication control functional unit

9.2.1 DiagnosticSessionControl (10 hex) service

Table 27 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 27 — Subfunction parameter definition

Hex
(bit 6-0)

Description Cvt Mnemonic

01 defaultSession U DS

02 ECUProgrammingSession U ECUPS

03 ECUExtendedDiagnosticSession U ECUEDS

Tables 28 and 29 define the structure of the response message data parameter sessionParameterRecord as
applicable for the implementation of this service on CAN.

Table 28 — sessionParameterRecord definition

Byte pos.
in record

Description Cvt Hex Value Mnemonic

#1
#2
#3
#4

sessionParameterRecord[] #1 = [
P2CAN_Server_max (high byte)
P2CAN_Server_max (low byte)
P2*CAN_Server_max (high byte)
P2*CAN_Server_max (low byte)]

M
M
M
M

00-FF
00-FF
00-FF
00-FF

SPREC_
P2CSMH
P2CSML

P2ECSMH
P2ECSML

Table 29 — sessionParameterRecord content definition

Parameter Description # of bytes Resolution min value max value

P2CAN_Server_max
Default P2CAN_Server_max timing supported by the
server for the activated diagnostic session.

2 1 ms 0 ms 65535 ms

P2*CAN_Server_max
Enhanced (NRC 78 hex) P2CAN_Server_max
supported by the server for the activated diagnostic
session.

2 10 ms 0 ms 655350 ms

9.2.2 ECUReset (11 hex) service

Table 30 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 30 — Subfunction parameter definition

Hex
(bit 6-0)

Description Cvt Mnemonic

01 hardReset U HR

02 keyOffOnReset U KOFFONR

03 softReset U SR

04 enableRapidPowerShutDown U ERPSD

05 disableRapidPowerShutDown U DRPSD

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 43

9.2.3 SecurityAccess (27 hex) service

Table 31 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 31 — Subfunction parameter definition

Hex
(bit 6-0)

Description Cvt Mnemonic

01 requestSeed U RSD

02 sendKey U SK

03, 05,
07-5F

requestSeed U RSD

04, 06,
08-60

sendKey U SK

9.2.4 CommunicationControl (28 hex) service

Table 32 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 32 — Subfunction parameter definition

Hex
(bit 6-0)

Description Cvt Mnemonic

00 enableRxAndTx U ERXTX

01 enableRxAndDisableTx U ERXDTX

02 disableRxAndEnableTx U DRXETX

03 disableRxAndTx U DRXTX

Table 33 defines the data parameters applicable for the implementation of this service on CAN.

Table 33 — Data parameter definition — CommunicationType

Bit 1-0 Description Cvt Mnemonic

01b application U APPL

10b networkManagement U NWM

Bit 1 – 0 can be used in any combination. Each bit represents a communicationType. More then one communicationType may be
initialised at the same time.

9.2.5 TesterPresent (3E hex) service

Table 34 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 34 — Subfunction parameter definition

Hex
(bit 6-0)

Description Cvt Mnemonic

00 zeroSubFunction M ZSUBF

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

44 © ISO 2004 – All rights reserved

9.2.6 SecuredDataTransmission (84 hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN.

9.2.7 ControlDTCSetting (85 hex) service

Table 35 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 35 — Subfunction parameter definition

Hex
(bit 6-0)

Description Cvt Mnemonic

01 on M ON

02 off M OFF

9.2.8 ResponseOnEvent (86 hex) service

The following requirements shall apply for this service when implemented on CAN.

a) Multiple ResponseOnEvent services may run concurrently with different requirements (different
EventTypes, serviceToRespondTo-Records, ...) to start and stop diagnostic services.

b) While the ResponseOnEvent service is active, the server shall be able to process concurrent diagnostic
request and response messages accordingly. This should be accomplished with a (different) pair of
serviceToRespondTo-request/response CAN identifiers. See Figure 16. If the same diagnostic
request/response CAN identifiers are used for diagnostic communication and the serviceToRespondTo-
responses, the following restrictions shall apply.

1) The server shall ignore an incoming diagnostic request after an event has occurred and the
serviceToRespondTo-response is in progress, until the serviceToRespondTo-response is completed.

2) After the client receives any response after sending a diagnostic request, the response shall be
classified according to the possible serviceToRespondTo-responses and the expected diagnostic
responses that have been sent.

3) If the response is a serviceToRespondTo-response (one of the possible responses set up with
ResponseOnEvent-service), the client shall repeat the request after the serviceToRespondTo-
response has been received completely.

4) If the response is ambiguous (i.e. the response could originate from the serviceToRespondTo
initiated by an event or from the response to a diagnostic request), the client shall present the
response both as a serviceToRespondTo-response and as the response to the diagnostic request.
The client shall not repeat the request with the exception of NegativeResponseCode
busyRepeatRequest (21 hex). (See the negative response code definitions in ISO 14229-1.)

c) The ResponseOnEvent service shall only be allowed to use those diagnostic services available in the
active diagnostic session.

d) While the ResponseOnEvent service is active, any change in a diagnostic session shall terminate the
current ResponseOnEvent service(s). For instance, if a ResponseOnEvent service has been set up
during extendedDiagnosticSession, it shall terminate when the server switches to the defaultSession.

e) If a ResponseOnEvent (86 hex) service has been set up during defaultSession, then the following shall
apply:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 45

1) If Bit 6 of the eventType subfunction parameter is set to 0 (do not store event), then the event shall
terminate when the server powers down The server shall not continue a ResponseOnEvent
diagnostic service after a reset or power on (i.e. the ResponseOnEvent service is terminated).

2) If Bit 6 of the eventType subfunction parameter is set to 1 (store event), it shall resume sending
serviceToRespondTo-responses according to the ResponseOnEvent-set up after a power cycle of
the server.

Figure 16 — Concurrent request when the event occurs

f) The subfunction parameter value responseRequired = “no” should only be used for the eventType =

stopResponseOnEvent, startResponseOnEvent or clearResponseOnEvent The server shall always
return a response to the event-triggered response when the specified event is detected.

g) The server shall return a final positive response to indicate the ResponseOnEvent (86 hex) service has
reached the end of the finite event window, unless one of the following conditions apply:

1) if eventTypes do not setup ResponseOnEvent, such as stopResponseOnEvent,
startResponseOnEvent, clearResponseOnEvent or reportActivatedEvents;

2) if the infinite event window was established

 if the Service has been deactivated before the event window was closed,

 Bit 6 of the eventType subfunction parameter is set to 0 (do not store) and the server powers
down or resets.

h) When the specified event is detected, the server shall respond immediately with the appropriate
serviceToRespondTo-response message. The immediate serviceToRespondTo-response message shall
not disrupt any other diagnostic request or response transmission already in progress (i.e. the

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

46 © ISO 2004 – All rights reserved

serviceToRespondTo-response shall be delayed until the current message transmission has been
completed — see Figure 17).

Figure 17 — Event occurrence during a message in progress

i) The ResponseOnEvent service shall only apply to transient events and conditions. The server shall return
a response once per event occurrence. For a condition that is continuously sustained over a period of
time, the response service shall be executed only one time at the initial occurrence. In case the
eventType is defined so that serviceToRespondTo-responses could occur at a high frequency, then
appropriate measures have to be taken in order to prevent back to back serviceToRespondTo-responses.
A minimum separation time between serviceToRespondTo-responses could be part of the
eventTypeRecord (vehicle-manufacturer-specific).

Tables 36 and 37 define the subfunction parameters applicable for the implementation of this service on CAN.

Table 38 defines the data parameters applicable for the implementation of this service on CAN.

Table 36 — eventType subfunction bit 6 definition — StorageState

Bit 6
value

Description Cvt Mnemonic

0 doNotStoreEvent M DNSE

1 storeEvent U SE

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 47

Table 37 — Subfunction parameter definition

Hex
(bit 5-0)

Description Cvt Mnemonic

00 stopResponseOnEvent U STPROE

01 onDTCStatusChange U ONDTCS

02 onTimerInterrupt U OTI

03 onChangeOfDataIdentifier U OCOCID

04 reportActivatedEvents U RAE

05 startResponseOnEvent U STRTROE

06 clearResponseOnEvent U CLRROE

07 onComparisonOfValues M OCOV

Table 38 — Data parameter definition — serviceToRespondToRecord.serviceId

Recommended services (ServiceToRespondTo) RequestService Identifier (SId)

ReadDataByIdentifier 22 hex

ReadDTCInformation 19 hex

RoutineControl 31 hex

InputOutputControlByIdentifier 2F hex

9.2.9 LinkControl (87 hex) service

Table 39 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 39 — Subfunction parameter definition

Hex
(bit 6-0)

Description Cvt Mnemonic

01 verifyBaudrateTransitionWithFixedBaudrate U VBTWFBR

02 verifyBaudrateTransitionWithSpecificBaudrate U VBTWSBR

03 transitionBaudrate U TB

9.3 Data transmission functional unit

9.3.1 ReadDataByIdentifier (22 hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN.

9.3.2 ReadMemoryByAddress (23 hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

48 © ISO 2004 – All rights reserved

9.3.3 ReadScalingDataByIdentifier(24 hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN.

9.3.4 ReadDataByPeriodicIdentifier (2A hex) service

The two types of response messages as defined for this service in ISO 14229-1 are mapped onto CAN as
follows.

 Response message type #1 (including the service identifier, the echo of the periodicDataIdentifier and the
data of the periodicDataIdentifier): This type of response message is mapped onto a USDT3) message,
using the same response CAN identifier as used for any other USDT response message. The USDT
message for a single periodicDataIdentifier shall not exceed the size of a single CAN frame, which means
that the complete USDT response message shall fit into a SingleFrame N_PDU.

 Response message type #2 (including the periodicDataIdentifier and the data of the
periodicDataIdentifier): This type of response message is mapped onto a UUDT4) message, using a
different CAN identifier as used for the USDT response message. The UUDT message for a single
periodicDataIdentifier shall not exceed the size of a single CAN frame.

The mapping of the two response types lead to certain client and server requirements as listed in Tables 40
and 41.

Table 40 — Periodic transmission — Requirements for the response type #1 message mapping

Message type Client request
requirements

Server response
requirements

Further server restrictions

Any other new incoming request shall be prioritized and the periodic
transmission may be delayed.

The periodic response is processed in the server as a regular USDT
message (with protocol control information (PCI), service identifier
(SId) and periodicDataIdentifier) and is processed by the server
network layer. This means that a maximum of 5 data bytes are
available for the data of a periodicDataIdentifier when using normal
addressing and 4 data bytes when using extended addressing for the
response message.

USDT

uses the same
CAN identifier for

diagnostic
communication and

periodic
transmission

No restrictions

Only single-frame
responses for

periodic transmission

Multi-frame
responses to new

(non-periodic-
transmission)

requests possible

For an incoming multi-frame request message, any scheduled
periodic transmission shall be delayed in the server immediately after
the N_USDataFF.ind of a multi-frame request or the N_USData.ind of
a SingleFrame request is processed by the application. Once the
complete service is processed (including the final response
message), the transmission of the periodic messages shall be
continued.

3) USDT Unacknowledged Segmented Data Transfer, ISO 15765-2 network layer, includes protocol control
information for segmented data transmission.

4) UUDT Unacknowledged Unsegmented Data Transfer, single CAN frames, do not include protocol control
information, which results in max. 7/8 data bytes for normal/extended addressing.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 49

Table 41 — Periodic transmission — Requirements for response type #2 message mapping

Message type Client request
requirements

Server response
requirements

Further server restrictions

The request for periodic transmission is processed as a regular
diagnostic request and the response is sent via the network layer (as
a USDT message with service identifier 6A hex).

On receiving the N_USData.con that indicates the completion of the
transmission of the positive response, the application starts an
independent scheduler, which handles the periodic transmission.

The scheduler in the server processes the periodic transmission as a
single frame UUDT-message in a by-pass (i.e. writes the UUDT
message directly to the CAN-controller/data link layer driver without
using the network-layer).

UUDT

uses a different
CAN identifier for

periodic
transmission

No restrictions

Only single-frame
responses for

periodic transmission

Multi-frame
responses to new

(non-periodic-
transmission)

requests are possible For an UUDT-message there is no need to include protocol control
information (PCI) and service identifier (SId), only the periodic
identifier is included, so a maximum of 7 data bytes can be used for
the data of a periodicDataIdentifier for normal addressing and 6 data
bytes for extended addressing.

Figures 18 and 19 graphically depict the two types of periodic response messages, as the server should
handle them. Furthermore, the figures show that the periodically transmitted response messages do not have
any influence on the S3Server timer of the server. For both figures it is assumed that a non-defaultSession has
been activated prior to the configuration of the periodic scheduler (the ReadDataByPeriodicIdentifier service
requires a non-defaultSession in order to be executed).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

50 © ISO 2004 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 51

a The diagnostic application of the client starts the transmission of the ReadDataByPeriodicIdentifier (2A hex) request
message by issuing a N_USData.req to its network layer. The network layer transmits the ReadDataByPeriodicIdentifier
(2A hex) request message to the server. The request message can either be a single-frame message or a multi-frame
message (depends on the number of periodicDataIdentifier contained in the request message). For the example given, it
is assumed that the request message is a SingleFrame message.
b The completion of the request message is indicated in the client via N_USData.con. Now the response timing as
described in 6.3.5.1.1 and 6.3.5.1.2 applies.
c The completion of the request message is indicated in the server via the N_USData.ind. Now the response timing as
described in 6.3.5.1.1 and 6.3.5.1.2 applies. Furthermore, the server stops its S3Server timer.
d For the figure given, it is assumed that the client requires a response from the server. The server shall transmit the
ReadDataByPeriodicIdentifier positive response message to indicate that the request has been processed and that the
transmission of the periodic messages will start afterwards.
e The completion of the transmission of the ReadDataByPeriodicIdentifier response message is indicated in the server
via N_USData.con. Now the server restarts its S3Server timer, which keeps the activated non-default session active as long
as it does not time out.
f The server starts to transmit the periodic response messages (SingleFrame message). Each periodic message
utilizes the network layer protocol and uses the response CAN identifier that is also used for any other response message.
Therefore, the server issues a N_USData.req to the network layer each time a periodic message is transmitted and no
other service is currently in the process of being handled by the server. For the example given, it is assumed that the
server is able to transmit three (3) periodic messages prior to the next request message that is issued by the client. The
transmission of the periodic response messages has no influence on the S3Server timer (see 6.3.5.4).
g The diagnostic application of the client starts the transmission of the next request message by issuing a
N_USData.req to its network layer. The network layer transmits the request message to the server. The request message
can either be a single-frame message or a multi-frame message. For the example given, it is assumed that the request
message is a multi-frame message.
h The completion of the request message is indicated in the client via N_USData.con. Now the response timing as
described in 6.3.5.1.1 and 6.3.5.1.2 applies.
i Once the start of a request message is indicated in the server via N_USDataFF.ind (or N_USData.ind for SingleFrame
request messages) while a periodic scheduler is active, the server shall temporarily stop the periodic scheduler for the
duration of processing the received request message. Furthermore, any time the server is in the process of handling any
diagnostic service it stops its S3Server timer.
j The completion of the multi-frame request message is indicated in the server via the N_USData.ind. Now the
response timing as described in 6.3.5.1.1 and 6.3.5.1.2 applies. The scheduler for the transmission of the periodic
messages remains disabled.
k For the figure given, it is assumed that the client requires a response from the server. The server shall transmit the
positive (or negative) response message via issuing N_USData.req to its network layer. For the example, it is assumed
that the response is a multi-frame message.
l When the S3Client timer times out in the client, then the client transmits a functionally addressed TesterPresent (3E
hex) request message to reset the S3Server timer in the server.
m The server is in the process of transmitting the multi-frame response of the previous request. Therefore, the server
shall not act on the received TesterPresent (3E hex) request message, because its S3Server timer is not yet re-activated.
n When the diagnostic service is completely processed, then the server restarts its S3Server timer. This means that any
diagnostic service, including TesterPresent (3E hex), resets the S3Server timer. A diagnostic service is meant to be in
progress any time between the start of the reception of the request message (N_USDataFF.ind or N_USData.ind receive)
and the completion of the transmission of the response message, where a response message is required, or the
completion of any action that is caused by the request, where no response message is required (point in time reached that
would cause the start of the response message). This includes negative response messages including response code
78 hex. The server re-enables the periodic scheduler when the service is completely processed (final response message
completely transmitted).
o The server restarts the transmission of the periodic response messages (SingleFrame message). Each periodic
message utilizes the network layer protocol and uses the response CAN identifier that is also used for any other response
message. Therefore, the server issues a N_USData.req to the network layer each time a periodic message is transmitted
and no other service is currently in the process of being handled by the server. The transmission of the periodic response
messages has no influence on the S3Server timer (see 6.3.5.4).
p Once the S3Client timer is started in the client (non-defaultSession active), this causes the transmission of a
functionally addressed TesterPresent (3E hex) request message, which does not require a response message, each time
the S3Client timer times out.
q Upon the indication of the completed transmission of the TesterPresent (3E hex) request message via
N_USData.con of its network layer, the client once again starts its S3Client timer. This means that the functionally
addressed TesterPresent (3E hex) request message is sent on a periodic basis every time S3Client times out.

Figure 18 — Response message type #1 handling

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

52 © ISO 2004 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 53

a The diagnostic application of the client starts the transmission of the ReadDataByPeriodicIdentifier (2A hex) request
message by issuing a N_USData.req to its network layer. The network layer transmits the ReadDataByPeriodicIdentifier
(2A hex) request message to the server. The request message can either be a single-frame or multi-frame message
(depends on the number of periodicDataIdentifier contained in the request message). For the example given, it is
assumed that the request message is a SingleFrame message.
b The completion of the request message is indicated in the client via N_USData.con. Now the response timing as
described in 6.3.5.1.1 and 6.3.5.1.2 applies.
c The completion of the request message is indicated in the server via the N_USData.ind. Now the response timing as
described in 6.3.5.1.1 and 6.3.5.1.2 applies. Furthermore, the server stops its S3Server timer.
d It is assumed that the client requires a response from the server. The server shall transmit the
ReadDataByPeriodicIdentifier positive response message to indicate that the request has been processed and that the
transmission of the periodic messages will start afterwards.
e The completion of the transmission of the ReadDataByPeriodicIdentifier response message is indicated in the server
via N_USData.con. Now the server restarts its S3Server timer, which keeps the activated non-default session active as long
as it does not time out.
f The server starts to transmit the periodic response messages (single-frame message). Each periodic message is a
UUDT message and uses a different CAN identifier as used for any other response message (USDT CAN identifier).
Therefore, the server issues a N_UUData.req each time a periodic message is transmitted independent of any other
service currently processed by the server. This means that the transmission of the periodic response messages continues
even when the server is in the process of handling another diagnostic service request. The transmission of the periodic
response messages has no influence on the S3Server timer (see 6.3.5.4).
g The diagnostic application of the client starts the transmission of the next request message by issuing a
N_USData.req to its network layer. The network layer transmits the request message to the server. The request message
can either be a single-frame or multi-frame message. For the example given, it is assumed that the request message is a
multi-frame message.
h The completion of the request message is indicated in the client via N_USData.con. Now the response timing as
described in 6.3.5.1.1 and 6.3.5.1.2 applies.
i The start of a request message is indicated in the server via N_USDataFF.ind (or N_USData.ind for SingleFrame
request messages) while a periodic scheduler is active. The server does not stop the periodic scheduler for the duration of
processing the received request message. This means that the server transmits further periodic messages for the duration
of processing the diagnostic service. The client shall be aware of receiving these periodic response messages.
Furthermore, any time the server is in the process of handling any diagnostic service it stops its S3Server timer.
j The completion of the multi-frame request message is indicated in the server via the N_USData.ind. Now the
response timing as described in 6.3.5.1.1 and 6.3.5.1.2 applies.
k For the figure given, it is assumed that the client requires a response from the server. The server shall transmit the
positive (or negative) response message via issuing N_USData.req to its network layer. For the example, it is assumed
that the response is a multi-frame message. While the multi-frame response message is transmitted by the network layer,
the periodic scheduler continues to transmit the periodic response messages.
l When the S3Client timer times out in the client, then the client transmits a functionally addressed TesterPresent
(3E hex) request message to reset the S3Server timer in the server.
m The server is in the process of transmitting the multi-frame response of the previous request. Therefore, the server
shall not act on the received TesterPresent (3E hex) request message, because its S3Server timer is not yet re-activated.
n When the diagnostic service is completely processed, then the server restarts its S3Server timer. This means that any
diagnostic service, including TesterPresent (3E hex), resets the S3Server timer. A diagnostic service is meant to be in
progress any time between the start of the reception of the request message (N_USDataFF.ind or N_USData.ind receive)
and the completion of the transmission of the response message, where a response message is required, or the
completion of any action that is caused by the request, where no response message is required (point in time reached that
would cause the start of the response message). This includes negative response messages including response code
78 hex.
o Once the S3Client timer is started in the client (non-defaultSession active), this causes the transmission of a
functionally addressed TesterPresent (3E hex) request message, which does not require a response message, each time
the S3Client timer times out.
p Upon the indication of the completed transmission of the TesterPresent (3E hex) request message via N_USData.con
of its network layer, the client once again starts its S3Client timer. This means that the functionally addressed
TesterPresent (3E hex) request message is sent on a periodic basis every time S3Client times out.

Figure 19 — Response message type #2 handling

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

54 © ISO 2004 – All rights reserved

Table 42 defines the data parameters applicable for the implementation of this service on CAN.

Table 42 — Data parameter definition — TransmissionMode

Hex Description Cvt Mnemonic

01 sendAtSlowRate U SASR

02 sendAtMediumRate U SAMR

03 sendAtFastRate U SAFR

04 stopSending U SS

9.3.5 DynamicallyDefineDataIdentifier (2C hex) service

When the client dynamically defines a periodicDataIdentifier and the total length of the dynamically defined
periodicDataIdentifier exceeds the maximum length that fits into a single frame periodic response message,
then the request shall be rejected with a negative response message including negative response code
31 hex (requestOutOfRange). See ReadDataByPeriodicIdentifier (9.3.4) for details regarding the periodic
response message format.

When multiple DynamicallyDefineDataIdentifier request messages are used to configure a single
periodicDataIdentifier and the server detects the overrun of the maximum number of bytes during a
subsequent request for this periodicDataIdentifier, then the server shall leave the definition of the
periodicDataIdentifier as it was prior to the request that lead to the overrun.

Table 43 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 43 — Subfunction parameter definition

Hex
(bit 6-0)

Description Cvt Mnemonic

01 defineByIdentifier U DBID

02 defineByMemoryAddress U DBMA

03 clearDynamicallyDefinedDataIdentifier U CDDDI

9.3.6 WriteDataByIdentifier (2E hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN.

9.3.7 WriteMemoryByAddress (3D hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN.

9.4 Stored data transmission functional unit

9.4.1 ReadDTCInformation (19 hex) service

Table 44 defines the subfunction parameters applicable for the implementation of this service on CAN.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 55

Table 44 — Subfunction parameter definition

Hex
(bit 6-0)

Description Cvt Mnemonic

01 reportNumberOfDTCByStatusMask U RNODTCBSM

02 reportDTCByStatusMask M RDTCBSM

03 reportDTCSnapshotIdentification U RDTCSSI

04 reportDTCSnapshotRecordByDTCNumber U RDTCSSBDTC

05 reportDTCSnapshotRecordByRecordNumber U RDTCSSBRN

06 reportDTCExtendedDataRecordByDTCNumber U RDTCEDRBDN

07 reportNumberOfDTCBySeverityMaskRecord U RNODTCBSMR

08 reportDTCBySeverityMaskRecord U RDTCBSMR

09 reportSeverityInformationOfDTC U RSIODTC

0A reportSupportedDTC U RSUPDTC

0B reportFirstTestFailedDTC U RFTFDTC

0C reportFirstConfirmedDTC U RFCDTC

0D reportMostRecentTestFailedDTC U RMRVDTC

0E reportMostRecentConfirmedDTC U RMRCDTC

0F reportMirrorMemoryDTCByStatusMaskr U RMMDTCBSM

10 reportMirrorMemoryDTCExtendedDataRecordByDTCNumber U RMMDEDRBDN

11 reportNumberOfMirrorMemoryDTCByStatusMask U RNOMMDTCBSM

12 reportNumberOfEmissionsRelatedOBDDTCByStatusMask C RNOOBDDTCBSM

13 reportEmissionsRelatedOBDDTCByStatusMask C ROBDDTCBSM

Table 45 defines the DTC status bits applicable for the implementation of this service on CAN.

Where a DTCFailureTypeByte is used when implementing this service on CAN, the DTCFailureTypeByte
definitions shall be in accordance with ISO 15031-6.

Table 45 — DTC status bit definitions

Bit Description Cvt Mnemonic

Emission

Non-
Emission

0 testFailed U U TF

1 testFailedThisMonitoringCycle M C1 TFTMC

2 pendingDTC M U PDTC

3 confirmedDTC M M CDTC

4 testNotCompletedSinceLastClear C2 C2 TNCSLC

5 testFailedSinceLastClear C2 C2 TFSLC

6 testNotCompletedThisMonitoringCycle M M TNCTMC

7 warningIndicatorRequested M U WIR

C1 Bit 1 (testFailedThisMonitoringCycle) is Mandatory if Bit 2 (pendingDTC) is supported. Bit 1 (testFailedThisMonitoringCycle) is User
Optional if Bit 2 (pendingDTC) is not supported.

C2 Bit 4 (testNotPassedSinceLastClear) and Bit 5 (testNotFailedSinceLastClear) shall always be supported together.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

56 © ISO 2004 – All rights reserved

9.4.2 ClearDiagnosticInformation (14 hex) service

Table 46 defines the data parameters applicable for the implementation of this service on CAN.

Table 46 — Data parameter definition — GroupOfDTC

Hex Description Cvt Mnemonic

000000 — FFFFFE Individual / Single DTC U SDTC

FFFFFF All Groups (all DTCs) M AGDTC

9.5 Input/Output control functional unit

9.5.1 InputOutputControlByIdentifier (2F hex) service

In the case where the first byte of the controlOptionRecord is used as an InputOutputControlParameter, then
Table 47 defines the data parameters applicable for the implementation of this service on CAN.

Table 47 — Data parameter definition — inputOutputControlParameter

Hex Description Cvt Mnemonic

00 returnControlToECU U RCTECU

01 resetToDefault U RTD

02 freezeCurrentState U FCS

03 shortTermAdjustment U STA

9.6 Remote activation of routine functional unit

9.6.1 RoutineControl (31 hex) service

Table 48 defines the subfunction parameters applicable for the implementation of this service on CAN.

Table 48 — Subfunction parameter definition

Hex
(bit 6-0)

Description Cvt Mnemonic

01 startRoutine U STR

02 stopRoutine U STPR

03 requestRoutineResults U RRR

 STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 57

9.7 Upload/Download functional unit

9.7.1 RequestDownload (34 hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN.

9.7.2 RequestUpload (35 hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN.

9.7.3 TransferData (36 hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN.

9.7.4 RequestTransferExit (37 hex) service

There are neither additional requirements nor restrictions defined for this service for its implementation on
CAN.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

58 © ISO 2004 – All rights reserved

10 Non-volatile server memory programming process

10.1 General information

This clause defines a framework for the physically oriented download of one or multiple application
software/data modules into non-volatile server memory. The defined non-volatile server memory programming
sequence addresses

a) vehicle-manufacturer-specific needs in performing certain steps during the programming process, while
being compliant with the general service execution requirements as specified in ISO 14229-1 (such as the
sequential order of services and the session management),

b) the CAN bus being a network with multiple nodes connected, which interact with each other, using normal
communication CAN messages,

c) use of either a physically oriented vehicle approach (point-to-point communication — servers do not
support functional diagnostic communication) or a functionally oriented vehicle approach (point-to-point
and point-to-multiple communication — servers support functional diagnostic communication). A single
vehicle shall only support one of the above mentioned vehicle approaches.

The programming sequence is divided into two programming phases. All steps are categorized based on the
following types.

a) Standardized steps: this type of step is mandatory. The client and the server shall behave as specified.

b) Optional/recommended steps: this type of step is optional. Optional steps contain recommendations on
how an operation shall be performed. Where the specified functionality is used, then the client and the
server shall behave as specified.

c) Vehicle manufacturer specific steps: the usage and content of this step is left at the discretion of the
vehicle manufacturer and shall be in accordance with ISO 14229-1 and ISO 15765-3.

The defined steps can either be

 functionally addressed to all nodes on the CAN network (functionally oriented vehicle approach, servers
support functional diagnostic communication), or

 physically addressed to each node on the CAN network (physically oriented vehicle approach, servers do
not support functional diagnostic communication).

Each step of the two programming phases of the programming procedure will specify the allowed addressing
method for that step. The vehicle-manufacturer-specific steps can either by functionally or physically
addressed (depends on the OEM requirements).

See Figure 20.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 59

Figure 20 — ISO 15765-3 non-volatile server memory programming process overview

a) Programming phase #1 — download of application software and/or application data

Within programming phase #1, the application software/data is transferred to the server.

1) Optional Pre-Programming step — Setup of CAN network for programming

The pre-programming step of phase #1 is optional and used to prepare the CAN network for a
programming event of one or multiple servers. This step provides certain hooks where a vehicle
manufacturer can insert specific operations that are required for the OEM vehicle’s CAN network
(perform wake-up, determine communication parameters, read server identification data, etc.).

This step also contains provisions to increase the baud rate to improve download performance. The
usage of this functionality is optional and can only be performed in case of a functionally oriented
vehicle approach (functional diagnostic communication supported by the servers).

The request messages of this step can either be physically or functionally addressed.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

60 © ISO 2004 – All rights reserved

2) Server Programming step — Download of application software and application data

The server programming step of phase #1 is used to program one or multiple servers (download of
application software and/or application data and/or boot software).

Within this step, only physical addressing is used by the client, which allows for parallel or sequential
programming of multiple nodes. In the case where the pre-programming step is not used, then the
DiagnosticSessionControl (10 hex) with subfunction programmingSession can also be performed
using functional addressing.

At the end of this step, the reset of the re-programmed server(s) is optional. The use of the reset
leads to the requirement to implement programming phase #2 in order to finally conclude the
programming event by physically clearing DTCs in the re-programmed server(s), because after the
physical reset during this step the re-programmed server(s) enable(s) the default session and
perform(s) their normal mode of operation while the remaining server(s) have still disabled normal
communication. The re-programmed server(s) will potentially set DTCs.

Furthermore, it shall be considered that the re-programmed server could activate a new set of
diagnostic CAN identifiers, which differs from the ones used when performing a programming event
(see 10.3).

If either the server that was re-programmed does not change its communication parameters or the
client knows the changed communication parameters, then following the reset certain configuration
data can be written to the re-programmed server.

3) Post-Programming step — Re-synchronization of CAN network after programming

The post-programming step of phase #1 concludes the programming phase #1. This step is
performed when the programming step of each reprogrammed server is finished.

The request messages of this steps can either be physically or functionally addressed.

The CAN network is transitioned to its normal mode of operation. This can either be done via a reset
using the ECUReset (11 hex) service or an explicit transition to the default session via the
DiagnosticSessionControl (10 hex) service. The DiagnosticSessionControl (10 hex) service shall not
enable potentially present valid application software in the server (no implicit ECUReset).

b) Programming phase #2 — Server configuration (optional)

Programming phase #2 is an optional phase in which the client can perform further actions that are
needed to finally conclude a programming event (write the VIN, trigger Immobilizer learn-routine, etc.).
For example, if the server(s) that has (have) been re-programmed is (are) physically reset during the
server programming step of programming phase #1, then DTCs shall be cleared in this server(s).

When executing this phase, the downloaded application software/application data is running/activated in
the server and the server provides its full diagnostic functionality.

1) Pre-Programming step — Setup of CAN network for server configuration

The pre-programming step of phase #2 is used to prepare the CAN network for the programming
step of phase #2. This step is an optional step and provides certain hooks where a vehicle
manufacturer can insert specific operations that are required for OEM vehicle’s CAN network (e.g.
wake-up, determine communication parameters).

The request messages of these steps can either be physically or functionally addressed.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 61

2) Programming step — Final server configuration

The programming step is used to, for example, write data (e.g. VIN), after the server reset.

The content of this step is vehicle-manufacturer-specific.

If the server(s) that has (have) been re-programmed are physically reset at the end of the server
programming step of programming phase #1, then DTCs shall be cleared in this server(s) during the
programming step of phase #2.

The request messages of these steps are physically addressed.

3) Post-Programming step — Re-synchronization of CAN network after final server configuration

The post-programming step concludes programming phase #2. This step is performed when the
programming step of each reprogrammed server is finished. The CAN network is transitioned to its
normal mode of operation.

This step can either be functionally oriented (servers support functional diagnostic communication) or
physically oriented (servers do not support functional diagnostic communication).

The request messages of these steps can either be physically or functionally addressed.

10.2 Detailed programming sequence

10.2.1 Programming phase #1 — Download of application software and/or application data

10.2.1.1 Pre-Programming step of phase #1 — Setup of CAN network for programming

Figure 21 graphically depicts the functionality embedded in the pre-programming step.

10.2.1.2 Programming step of phase #1 — Download of application software and data

Following the pre-programming step, the programming of one or multiple servers is performed. The
programming sequence applies for a programming event of a single server and is therefore physically
oriented. When multiple servers are programmed, then multiple programming events either run in parallel or
will be performed sequentially.

Figure 22 graphically depicts the functionality embedded in the programming step of phase #1.

10.2.1.3 Post-Programming step of phase #1 — Re-synchronization of CAN

Figure 23 graphically depicts the functionality embedded in the post-programming step of phase #1.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

62 © ISO 2004 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 63

a Prior to any communication on the CAN link the network shall be initialized, which means that an initial wake-up of the
CAN network shall be performed. The wake-up method and strategy is vehicle-manufacturer-specific and optionally to be
used. Furthermore, this step allows for a determination of the server communication parameters such as the network
configuration parameter serverDiagnosticAddress and the CAN identifiers used by the server(s).
b In order to be able to disable the normal communication between the servers and the setting of DTCs, it is required to
start a non-defaultSession in each server where normal communication and DTCs shall be disabled. This is achieved via a
DiagnosticSessionControl (10 hex) service with sessionType equal to extendedDiagnosticSession. The request is either
transmitted functionally addressed to all servers with a single request message, or physically addressed to each server in
a separate request message (requires a physically addressed TesterPresent (3E hex) request message to be transmitted
to each server that is transitioned into a non-defaultSession). It is vehicle-manufacturer-specific whether response
messages are required or not.
c Following the transition into the extendedDiagnosticSession, further vehicle-manufacturer-specific CAN link
initialization steps can optionally be performed.
EXAMPLE A vehicle-manufacturer-specific additional initialization step can be to issue a request that causes gateway devices to
perform a wake-up on all CAN links which are not accessible by the client directly through the diagnostic connector. The gateway will
keep the CAN link(s) awake as long as the non-defaultSession is kept active in the gateway.
d The client disables the setting of DTCs in each server using the ControlDTCSetting (85 hex) service with
DTCSettingType equal to “off”. The request is either transmitted functionally addressed to all servers with a single request
message, or transmitted physically addressed to each server in a separate request message. It is vehicle-manufacturer-
specific whether response messages are required or not.
e The client disables the transmission and reception of non-diagnostic messages using the CommunicationControl
(28 hex) service. The controlType parameter and communicationType parameter values are vehicle-manufacturer-specific
(one OEM might disable the transmission only while another OEM might disable the transmission and the reception based
on vehicle-manufacturer-specific needs). The request is either transmitted functionally addressed to all servers with a
single request message, or transmitted physically addressed to each server in a separate request message. It is vehicle-
manufacturer-specific whether response messages are required or not.
f After disabling normal communication an optional vehicle-manufacturer-specific step follows, which allows the
following.
 Reading the status of the server(s) to be programmed (e.g. application software/data programmed).

 Reading server identification data from the server(s) to be programmed:

1) identification (see ISO 14229-1, dataIdentifier definitions)
applicationSoftwareIdentification, applicationDataIdentification, bootSoftwareIdentification;

2) fingerprint (see ISO 14229-1, dataIdentifier definitions)
applicationSoftwareFingerprint, applicationDataFingerprint, bootSoftwareFingerprint.

 Communication configuration such as dynamic assignment of CAN identifiers for a “Service ECU”.

 Preparation of non-programmable servers for the upcoming programming event in order to allow them to optimize
their CAN hardware acceptance filtering in a way that they can handle a 100 % bus utilization without dropping CAN
frames (only accept the function request CAN identifier and its own physical request CAN identifier).

g It is optional to increase the baud rate for the programming event in order to decrease the overall programming time
and to gain additional bandwidth to be able to program multiple servers in parallel. A LinkControl (87 hex) service with
linkControl equal to either verifyBaudrateTransitionWithFixedBaudrate or verifyBaudrateTransitionWithSpecificBaudrate is
transmitted functionally or physically addressed to all servers with a single request message with responseRequired equal
to “yes”. This service is used to verify if a baud rate switch can be performed. At this point the baud rate switch is not
performed. A second LinkControl (87 hex) service with subfunction transitionBaudrate is transmitted functionally
addressed to all servers with a single request message with responseRequired equal to “no”.
Once the request message is successfully transmitted, the client and all servers transition their baud rate to the previously
verified baud rate for the programming event. The servers have to transition the baud rate within a vehicle-manufacturer-
specific timing window. For this duration plus a safety margin, the client is not allowed to transmit any request message
onto the CAN network (including the TesterPresent request message). When the baud rate transition is successfully
performed, then the baud rate shall stay active for the duration the server switches between non-defaultSessions. Once
the server transitions to the defaultSession, it shall re-enable the normal speed baud rate of the CAN link it is connected
to.

The usage of the baud rate switch requires the support of functional diagnostic communication in each server on
a single CAN link that shall be transitioned to a higher baud rate, because the transition of the baudrate shall be
performed at the same time by all nodes (including the client).

Figure 21 — Pre-programming step of phase #1 (STP1)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

64 © ISO 2004 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 65

a The programming event is started in the server(s) via a physically/functionally addressed request of the
DiagnosticSessionControl (10 hex) service with sessionType equal to programmingSession. When the server(s) receive(s)
the request, it/they shall allocate all necessary resources required for programming. It is implementation specific whether
the server(s) start(s) executing out of boot memory.
b A programming event should be secured. The SecurityAccess (27 hex) service shall be mandatory for emissions-
related and safety systems. Other systems are not required to implement this service. The method on how a security
access is performed is specified in ISO 14229-1.
c It is vehicle-manufacturer-specific to write a "fingerprint" into the server memory prior to the download of any routine
and/or application software/data. The "fingerprint" identifies the one who modifies the server memory. When using this
option then the dataIdentifiers bootSoftwareFingerprint, applicationSoftwareFingerprint and applicationDataFingerprint
shall be used to write the fingerprint information (see ISO 14229-1 - dataIdentifier definitions).
d Where the server does not have the memory erase routine stored in permanent memory, then a download of the
memory erase routine shall be performed. The download shall follow the specified sequence with RequestDownload (…),
TransferData, and RequestTransferExit.
e It is vehicle-manufacturer-specific if a RoutineControl (31 hex) is used to check whether the download of the memory
erase routine was successful. Alternative methods are to provide the result in the RequestTransferExit positive response
message or via a negative response message including the appropriate negative response code to the
RequestTransferExit request message.
f The memory of the server shall be erased in order to allow an application software/data download. This is achieved
via a routine, using the RoutineControl (31 hex) service to execute the erase routine.
g Where the server does not have the memory programming routine stored in permanent memory, then a download of
the memory programming routine shall be performed. The download shall follow the specified sequence with
RequestDownload (34 hex), TransferData (36 hex), and RequestTransferExit (37 hex).
h It is vehicle-manufacturer-specific if a RoutineControl (31 hex) is used to check whether the download of the memory
program routine was successful. Alternative methods are to provide the result in the RequestTransferExit positive
response message or via a negative response message including the appropriate negative response code to the
RequestTransferExit request message.
i Each download of a contiguous block of application software/data to a non-volatile server memory location (either a
complete application software/data module or part of a software/data module) shall always follow the general data transfer
method using the following service sequence:
 RequestDownload (34 hex);
 TransferData (36 hex);
 RequestTransferExit (37 hex).
A single application software/data block might require multiple TransferData (36 hex) request messages to be completely
transmitted (this is the case if the length of the block exceeds the maximum network layer buffer size).
j It is vehicle-manufacturer-specific if a RoutineControl (31 hex) is used to check whether the download of the memory
program routine was successful. Alternative methods are to provide the result in the RequestTransferExit positive
response message or via a negative response message including the appropriate negative response code to the
RequestTransferExit request message.
k Once all application software/data blocks/modules are completely downloaded, the client shall verify if the download
has been performed successfully by initiating a routine in the server using the RoutineControl (31 hex) service. This
routine either triggers the server to check
 the reprogramming dependencies and to perform all necessary action to proof that the download and programming

into non-volatile memory was successful, or
 it requests the server to calculate the checksum and submit the checksum to the client via a RoutineControl positive

response message (requestRoutineResults) for a comparison with a checksum contained in the client.
The calculation method (e.g. CRC32, CRC16, 2 byte accumulated checksum, etc.) used is left at the discretion of the
vehicle manufacturer.
The checksum comparison method (e.g. server side, client side) is left at the discretion of the vehicle manufacturer.
Following the download of the application software/data, it is optional to physically reset the re-programmed server in
order to enable the downloaded application software/data. It shall be considered that the re-programmed server could
activate a new set of diagnostic CAN identifiers, which differs to the ones used when performing the programming event
(see 10.3). If either the server that was re-programmed does not change its communication parameters or the
programming environment know the changed communication parameters, then following the reset certain configuration
data can be written to the re- programmed server.
l Following the download of the application software/data, it is vehicle-manufacturer-specific to perform further
operations such as writing configuration data (e.g. VIN, etc.) back to the server. This also depends on the functionally that
is supported by the re-programmed server when running out of boot.

Figure 22 — Programming step of phase #1 (STP2)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

66 © ISO 2004 – All rights reserved

a The client transmits either an ECUReset (11 hex) service request message onto the CAN network with resetType
equal to hardReset or DiagnosticSessionControl (10 hex) with sessionType equal to defaultSession. This can either be
done functionally addressed or physically addressed (depends on the supported vehicle approach). Further it is vehicle-
manufacturer-specific whether a response message is required or not.
When a baud rate switch has been performed, then this step shall be performed functionally, not requiring a response
message, because the servers perform a baud rate transition to their normal speed of operation.
The reception of the ECUReset (11 hex) request message causes the server(s) to perform a reset and to start the
defaultSession.

Figure 23 — Post-programming step of phase #1 (STP3)

10.2.2 Programming phase #2 — Server configuration

10.2.2.1 Pre-programming step of phase #2 — Server configuration

The pre-programming step of phase #2 is optional and should be used when there is the need to perform
certain action after the software reset of the reprogrammed server. This will be the case when the server does
not provide the required functionality to finally conclude the programming event when running out of boot
during the programming step of phase #1.

Figure 24 graphically depicts the functionality embedded in the pre-programming step of phase #2.

10.2.2.2 Programming step of phase #2 — Final server configuration

The programming step of phase #2 is optional and contains any action that needs to take place with the
reprogrammed server after the reset (when the application software is running) such as writing specific
identification information. This step might be required in case the server does not provide the required
functionality to perform an action when running out of boot during the programming step of phase #1. When
multiple servers require performing additional functions, then multiple programming steps can run in parallel or
will be performed sequentially.

Figure 25 graphically depicts the functionality embedded in the post-programming step of phase #1.

10.2.2.3 Post-programming step of phase #2 — Re-synchronization of CAN network

The post-programming step of phase #2 is used to conclude the programming phase #2.

Figure 26 graphically depicts the functionality embedded in the post-programming step of phase #2.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 67

a Prior to any communication on the CAN link the network shall be initialized, which means that an initial wake-up of the
CAN network shall be performed. The wake-up method and strategy is vehicle-manufacturer-specific and optionally to be
used.
Furthermore, this step allows for a determination of the server communication parameters such as the network
configuration parameter serverDiagnosticAddress and the CAN identifiers used by the server(s).
b In order to be able to perform certain services in the programming step of phase #2, a non-defaultSession shall be
started in each server on the CAN link that is involved in the conclusion of the programming event. This is performed via a
DiagnosticSessionControl (10 hex) service with sessionType equal to extendedDiagnosticSession.
c Following the transition into the extendedDiagnosticSession, further vehicle-manufacturer-specific CAN link
initialization steps can optionally be performed.
EXAMPLE A vehicle-manufacturer-specific additional initialization step can be to issue a request that causes gateway devices to
perform a wake-up on all CAN links which are not accessible by the client directly through the diagnostic connector. The gateway will
keep the CAN link(s) awake as long as the non-defaultSession is kept active in the gateway.

Figure 24 — Pre-programming step of phase #2 (S4)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

68 © ISO 2004 – All rights reserved

a In case the re-programmed server(s) has (have) been reset during the programming step of programming phase #1,
then any diagnostic information that might have been stored in the re-programmed server(s) when the server was already
running in the default session while other servers on the link still had normal communication disabled shall be reset via a
physically addressed ClearDiagnosticInformation (14 hex) service.
b The client performs any operation that is required in order to conclude the programming event with the server, such as
writing configuration data (e.g. VIN).

Figure 25 — Programming step of phase #2 (STP5)

a The client transmits a DiagnosticSessionControl (10 hex) request onto the CAN network with sessionType equal to
defaultSession. The reception of the DiagnosticSessionControl (10 hex) causes all servers to start the defaultSession. The
request can either be transmitted functionally addressed or physically addressed. The request shall be transmitted to all
servers which were involved in the conclusion of the programming event and therefore stay in a non-defaultSession.

Figure 26 — Post-programming step of phase #2 (STP6)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 69

10.3 Server reprogramming requirements

10.3.1 Programmable servers and their categories

The non-volatile server memory programming process can be applied to a programmable server in order to

a) reprogram a server that has previously been fully programmed,

b) program a server which has been shipped to the vehicle assembly plant or service facility without some
element of its full combination of application software and application data,

c) reprogram a server which has detected an error with memory locations containing software or calibration,
and which has forced the server to run out of boot software.

Programmable servers fall into three categories.

PRG_TYPE_A servers are programmable servers that have already been fully programmed (either by the
ECU (electronic control unit) supplier, the vehicle assembly plant, or in the service environment).
PRG_TYPE_A servers are fully functional and can receive diagnostic requests and respond to them using the
appropriate diagnostic CANIds. These diagnostic CANIds shall be further referenced as permanent diagnostic
CANIds.

PRG_TYPE_B and PRG_TYPE_C servers are programmable servers that are missing some element of their
full combination of application software and application data, or are executing boot software due to a memory
error. A server missing application data (or missing application software and application data) could have
permanent diagnostic CANids pre-programmed. A programmable server which is not fully programmed and is
used on a single platform would most likely have its permanent diagnostic CANids pre-programmed. A
programmable server which is not fully programmed and can be used in multiple platforms might not have the
permanent diagnostic CANIds pre-programmed, unless all of the platforms can standardize the CANIds used
by that server (or multiple parts are released to accommodate the differences in CANids between platforms).
A PRG_TYPE_B server meets these criteria and has its permanent diagnostic CANIds pre-programmed. A
PRG_TYPE_C server meets these criteria and does not have its permanent diagnostic CANIds pre-
programmed. PRG_TYPE_B and PRG_TYPE_C servers shall not attempt to participate in any non-diagnostic
communication message exchange (inter-server communication).

NOTE A server executing boot software due to a memory fault is considered to be PRG_TYPE_B if permanent
diagnostic CANIds are comprehended in the boot software. If the permanent diagnostic CANIds are not comprehended in
boot software, then the server is considered PRG_TYPE_C.

If permanent diagnostic CANIds are pre-programmed, a programmable server shall respond to all diagnostic
requests which contain one of the permanent diagnostic CANIds supported by the server (PRG_TYPE_A and
PRG_TYPE_B). If permanent diagnostic CANIds are not pre-programmed (PRG_TYPE_C), the server shall
not respond to diagnostic request messages until diagnostic responses are enabled. The support of
PRG_TYPE_C servers and the process of enabling diagnostic responses are vehicle-manufacturer-specific.

The following is an example of how diagnostic responses can be enabled in PRG_TYPE_C servers.

A PRG_TYPE_C server shall not send positive or negative response messages for any diagnostic service
until the client enables them. While diagnostic responses are disabled, the server shall only process (but not
respond to) diagnostic requests sent using the functional request CANId addressed to all nodes on the CAN
network. Diagnostic responses shall become enabled once the server receives a DiagnosticSessionControl
(10 hex) service, followed by a CommunicationControl (28 hex) service request and a ReadDataByIdentifier
(22 hex) service request with dataIdentifier equal to serverDiagnosticAddress. The PRG_TYPE_C server shall
only respond to the ReadDataByIdentifier (22 hex) service request during this sequence, and shall respond to
all subsequent diagnostic requests until a S3Server timeout occurs or an ECUReset (11 hex) request is
received.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

70 © ISO 2004 – All rights reserved

Once a PRG_TYPE_C server has enabled diagnostic responses, it shall enable two special case diagnostic
CANids for programming purposes. The special-case CANIds are defined as follows.

a) PRG_PrimeReq CANId = 0xx hex, where “xx” represents the server's diagnostic address value. This
CANId shall be used as the physical request CANId.

b) PRG_PrimeRsp CANId = 3xx hex, where “xx” represents the server’s diagnostic address value. This
CANId shall be used as the response CANId.

During the sequence to enable diagnostic responses, the PRG_TYPE_C server shall respond to the
ReadDataByIdentifier (22 hex) service request using the PRG_PrimeRsp (3xx hex) CANId.

Diagnostic CANIds and non-diagnostic message CANIds for a fully programmed server are part of the
application data downloaded to the server during a programming event. Upon completion of a software reset,
the now completely programmed server(s) shall recognize its (their) specific CANId assignments for non-
diagnostic and diagnostic messaging.

10.3.2 Requirements for all servers to support programming

During a programming session, servers shall default their physical I/O pins (wherever possible and without
risk of damage to the server/vehicle and without risk of safety hazards) to a predefined state which minimizes
current draw.

Servers shall ensure that they can handle 100 % bus utilization at any allowed programming baud rate without
dropping CAN frames during the programming event. A server may need to modify its hardware acceptance
filtering in order to meet this requirement (see also 10.2.1.1). The server(s) actually being programmed can
recognize the need to modify its acceptance filtering by receiving the DiagnosticSessionControl (10 hex)
service with sessionType equal to programmingSession. The server(s) which are not actually programmed
(programmable or non-programmable servers) might need to be instructed to modify their acceptance filtering
for the duration of the programming event. The method on how those servers are instructed is vehicle-
manufacturer-specific.

The DiagnosticSessionControl (10 hex) service, with sessionType equal to extendedDiagnosticSession
followed by a CommunicationControl (28 hex) service that disables non-diagnostic messages and a
ControlDTCSetting (85 hex) service that disables setting of DTCs, shall be used by the server to recognize the
disabling of normal communication and to ensure that a server does not set DTCs while another server is
being programmed. The extendedDiagnosticSession shall be kept active by the client for the duration of the
programming event.

10.3.3 Requirements for programmable servers to support programming

10.3.3.1 Hardware requirements

All servers that are programmable shall be able to interface with the programming tools used by development,
the assembly plant and by service via the appropriate pins of the vehicle diagnostic connector. The only power
required at the vehicle diagnostic connector for programming shall be vehicle battery power.

Any server that is properly installed in the vehicle and is programmable shall be able to be programmed via
the vehicle diagnostic connector. Removal of the server from the vehicle in order to perform programming
shall not be required.

10.3.3.2 Software requirements

10.3.3.2.1 Application software

If the application software is programmable, then the application software shall be capable of being
programmed separately from the application data. This allows for assembly plant programming of only

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 71

calibrations. Deviations from this requirement shall be agreed upon by all responsible at the OEM and shall be
documented accordingly.

A server shall be capable of using the same diagnostic CANIds for the duration of a programming event. This
means that a server which stores the permanent diagnostic CANIds in calibration and is fully programmed at
the beginning of a programming event (SPS_TYPE_A server) shall use the permanent diagnostic CANIds
even after the application data have been erased. The application software is not required to retain the
permanent diagnostic CANIds if the programming event is interrupted prior to its completion and the server
has performed a software reset.

A server that is only capable of application data programming (e.g. the application software is part of ROM
and application date stored in EEPROM) shall have in the application software the equivalent functionality
specified for the boot software in the subsequent subclauses.

10.3.3.2.2 Application data

Application data (calibration data) shall be capable of being programmed separately from the application
software. This allows for assembly plant programming of application data only. Deviations from this
requirement shall be agreed upon by the responsible at the OEM and shall be documented accordingly.

The server shall support either one or both of the following methods of programming calibrations:

a) programming an individual application data module;

b) programming multiple (or all) of the application data modules during a single programming event.

10.3.3.3 Boot software description and requirements

All programmable servers that support programming of the application software shall contain boot software in
a boot memory region. Servers that support boot software shall continue to execute out of the boot until a
complete set of application software and application date is programmed.

The boot memory shall be protected against inadvertent erasure such that a failed attempt to modify
application data or application software does not prohibit the server's ability to recover and be programmed
after the failed attempt. The server shall be able to recover and be reprogrammed if any of the following error
conditions occur during the programming process:

a) loss of supplied power connection.

b) loss of the ground connection.

c) disruption of CAN communication.

d) over- or under-voltage conditions.

Boot software resides in the boot memory region and is the software that a server begins executing upon
power-up. Transfer of program control to the boot software also occurs once the server is informed that it is
about to be programmed (reference the DiagnosticSessionControl service and the programming process
defined in 10.2.1.2). No programmable server operating out of boot memory shall transmit a non-diagnostic
communication message or unsolicited diagnostic message.

10.3.3.3.1 Boot software general requirements

All servers operating out of boot memory shall be able to receive diagnostic messages. A server shall be
capable of using the same diagnostic CANIds for the duration of a programming event. This means that a
server which is fully programmed at the beginning of a programming event (PRG_TYPE_A server) shall use
its permanent diagnostic CANIds during the programming. To accomplish this, the permanent diagnostic
CANIds shall be provided to the boot software from the application software when program control is

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

72 © ISO 2004 – All rights reserved

transferred back to the boot software. The boot software is not required to retain the permanent diagnostic
CANIds passed from the application software if the programming event is interrupted prior to its completion
and the server has performed a software reset and becomes a PRG_TPE_C server (this is valid if the boot
software only supports the non-permanent CANIds).

The boot software shall be protected. The boot software can be protected via hardware (e.g. via settings in a
control register which prevents certain sectors of the memory from being erased or written to) or software (e.g.
address range restrictions in the programming routines). It is recommended that the boot software not be
capable of being modified by the same programming erase/write routines that are used to modify the
application software and application date. Programming the boot software as part of the programming process
may be allowed, provided that a mechanism is in place to ensure that there is no possibility that the server
could fail at a point of the programming process where it cannot recover and be programmed with a
subsequent programming event.

10.3.3.3.2 Boot software diagnostic service requirements

During the post-programming step of phase #1 the server either runs out of application software or out of boot,
while during the programming step of phase #1 the server runs completely out of boot, because it has
transitioned to boot when the programming session is enabled via the DiagnosticSessionControl (10 hex)
service.

During programming phase #2 the application software is running.

Tables 49 to 51 define the minimum diagnostic service requirements for the boot software of a programmable
server. The listed services have to be supported in order to fulfil the requirements for performing non-volatile
server memory programming during programming phase #1. The tables make use of the steps defined for
programming phase #1 (see 10.2.1). The service(s) to be supported for steps (a), (c) and (f) shall be defined
by the vehicle manufacturer.

Table 49 — Boot software diagnostic service support during pre-programming step of phase #1

Service Subfunction/Data parameter Sequence
step No.

Remark

DiagnosticSessionControl
(10 hex)

sessionType =
extendedDiagnosticSession

(03 hex)

(b) Mandatory:
Required for session management (S3Server timeout,
especially when performing a baudrate transition and
SecurityAccess service).

CommunicationControl
(28 hex)

controlType =
vehicle-manufacturer-specific

(disable non-diagnostic
communication messages)

(d) Mandatory:
The server does not need to perform any special
action (non-diagnostic messages are disabled when
running out of boot), except the transmission of a
positive response message.

ControlDTCSetting
(85 hex)

DTCSettingType =
off (02 hex)

(e) Mandatory:
The server does not need to perform any special
action (DTCs are disabled when running out of boot),
except the transmission of a positive response
message.

ReadDataByIdentifier
(22 hex)

dataIdentifier =
vehicle-manufacturer-specific

(f) Optional:
Required to be supported when reading
software/data identification data.

LinkControl
(87 hex)

linkControlType =
verifyWithFixedBaudrate

(01 hex),
verifyWithSpecifcBaudrate

(02 hex),
transitionBaudrate

(03 hex)

(g) Optional:
Required to be supported when performing a
baudrate switch.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

© ISO 2004 – All rights reserved 73

Table 50 — Boot software diagnostic service support during programming step of phase #1

Service Subfunction/Data parameter Sequence
step No.

Remark

DiagnosticSessionControl
(10 hex)

sessionType =
programmingSession

(02 hex)

(a) Mandatory:
Required for compatibility with application software in
order to allow for the identical handling in the
programming application of the client.

SecurityAccess
(27 hex)

securityAccessType =
readSeed (01 hex),
sendKey (03 hex)

(b) Optional:
Required to be supported by theft-, emission- and
safety-related systems.

WriteDataByIdentifier
(2E hex)

bootSoftwareFingerprint,
appSoftwareFingerprint,

appDataFingerprint,
vehicle-manufacturer-specific

(c), (m) Optional:
Required for writing the fingerprint and other
identification data.

RequestDownload
(34 hex)

vehicle-manufacturer-specific

TransferData
(36 hex)

routine data, application
software, or application data

RequestTransferExit
(37 hex)

vehicle-manufacturer-specific

(d), (g), (i) Mandatory:
In general required for the transfer of data from the
client to the server when running out of boot.

RoutineControl
(31 hex)

routineControlType =
startRoutine (01 hex)

routineIdentifier =
checkProgDependencies

(e), (f), (h),
(j), (k)

Mandatory:
Required for the check of the programming
dependencies. Can also be used when an optional
check of a successful transfer of data is performed (on a
service 34, 36, 37 hex sequence basis).

ECUReset
(11 hex)

resetType =
hardReset (01 hex)

(l) Mandatory:
Required for a physical reset of the re-programmed
server at the end of the programming step. The
server(s) that have been reprogrammed are forced to
perform a software reset in order to start the application
software.

The service(s) to be supported for step (m) shall be defined by the vehicle manufacturer.

Table 51 — Boot software diagnostic service support during post-programming step of phase #1

Service Subfunction /
Data parameter

Sequence
step

Remark

ECUReset
(11 hex)

hardReset (a) Mandatory:
The server(s) that have been reprogrammed are forced to
perform a software reset in order to start the application
software.

10.3.3.4 Security requirements

All programmable servers that have emission-, safety- or theft-related features shall employ a seed and key
security feature, accessible via the SecurityAccess (27 hex) service, to protect the programmed server from
inadvertent erasure and unauthorized programming. All such field service replacement servers shall be
shipped to the field with the security feature activated (i.e. a programming tool cannot gain access to the
server without first gaining access through the SecurityAccess service).

It is recommended, but not required, that all development servers use the “1s” complement of the seed as the
valid key.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

ISO 15765-3:2004(E)

74 © ISO 2004 – All rights reserved

10.3.3.5 Application software and application data file formats and requirements

The boot software, application software and application data files can have the following formats.

a) Binary — Raw binary file

This means that the client issues a RequestDownload (34 hex) service prior to the download, transmits
the whole data of the binary file with one or multiple TransferData (36 hex) services, and concludes the
transfer via the RequestTransferExit (37 hex) service.

b) Intel Hex5)— ASCII file according to Intel Hex format

This means that the client transfers each contiguous block of data contained in the Intel Hex file by
issuing a RequestDownload (34 hex) service prior to the download of the contiguous block, transmits the
whole data of the contiguous block with one or multiple TransferData (36 hex) services, and concludes
the transfer via the RequestTransferExit (37 hex) service. The client repeats the transfer sequence until
all contiguous blocks of the Intel Hex file are transferred.

c) Motorola S196) — ASCII file according to Motorola S19 format

This means that the client transfers each contiguous block of data contained in the Motorola S19 file by
issuing a RequestDownload (34 hex) service prior to the download of the contiguous block, transmits the
whole data of the contiguous block with one or multiple TransferData (36 hex) services, and concludes
the transfer via the RequestTransferExit (37 hex) service. The client repeats the transfer sequence until
all contiguous blocks of the Motorola S19 file are transferred.

Transferring blocks of data during the programming step where the non-volatile memory is not affected by the
transmitted data shall be avoided. This either requires the use of the Intel Hex or Motorola S19 file format or a
split into multiple modules when binary file format is used.

10.3.4 Software, data identification and fingerprints

10.3.4.1 Software and data identification

The boot software, application software and application data shall be identified via the dataIdentifiers
according to Table 52 (see also ISO 14229-1).

The dataIdentifiers defined in Table 52 result in the structure of the data portion of each dataIdentifier
according to Table 53. The structure of the identificationParameterRecord for bootSoftwareIdentification,
applicationSoftwareIdentification and applicationDataIdentificatioin is vehicle-manufacturer-specific and shall
be the same for all identification information.

Where no application data or application software is programmed in the server, then numberOfModules equal
to zero (0) shall be reported and no identificationParameterRecord shall be present.

Where a server supports multiple identicationParameterRecords for either application software, application
data or boot software, then its network layer shall be capable of transmitting the multi-frame response
message. This does not necessarily require that the network layer has to reserve the maximum buffer for the
transmission of this multi-frame message. The transmission of a long multi-frame message can also be

5) Intel Hex is the trade name of a product supplied by Intel. This information is given for the convenience of users of
this part of ISO 15765 and does not constitute an endorsement by ISO of the product named. Equivalent products may be
used if they can be shown to lead to the same results.

6) Motorola S19 is the trade name of a product supplied by Motorola. This information is given for the convenience of
users of this part of ISO 15765 and does not constitute an endorsement by ISO of the product named. Equivalent products
may be used if they can be shown to lead to the same results.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 15

76
5-3

:20
04

https://standardsiso.com/api/?name=0a6d8d32f7e7034eb84a124ecbab5b18

