TECHNICAL ISO/IECTR
REPORT 19075-5

First edition
2016-12-15

Information technology < "Database
languages — SQL Technical Reports —

Part 5:
Row Pattern Recognition in SQL

Technologies de l'information — Langages de base de donnges — SQL
Rapport techniques —

Partie 5: Reconnaissance de formes de lignes dans SQL

Reference number

ISO/IEC TR 19075-5:2016(E)
e ° ©ISO/IEC 2016

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +41 22 749 09 47
copyright@iso.org

www.iso.org

ii © ISO/IEC 2016 - All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)

Contents Page
0 1L 0 o P S .. Vil
INErOUCTION. L o . viii
L GO0 i A 1
2 Normative referenCes. D .3
2.1 ISOand IEC standards. s .. 3
3 Row pattern recognition: FROM ClauSE.ttt e iiieee e5b
3.1 Example of ONE ROW PER MATCH. S ..5
3.2 Example of ALL ROWS PER MATCH. O ..8
3.3 Summary of the SYNtaX. N e .10
34 The row pattern input table. L11
34.1 The row pattern input NAMe. e .12
3.4.2 The row pattern input declared column list. & 7 .13
3.5 MATCH_RECOGNIZE. . .. NN e e .14
3.6 PART I TION BY . .ot e e e et e e e .14
3.7 ORDER BY. . B .14
3.8 Row pattern variables. s e .14
3.9 MEASURES.16
3.10 ONE ROW PER MATCH vs. ALLROWS PER MATCH.16
3.10.1 1 Handling empty mMatChes. . o0 o o .16
3.10.2 | Handling unmatched FOWSo .ot .20
311 AFTER MATCH SKIP. . .o e .22
3.12 P AT TERN. L o0 e .24
3121 PERMUTE. et e e .25
3.12.2 | Excludingspartions of the pattern. 26
3.13 SUB S E T oo .. 27
3.14 DERINE. . o .28
3.15 The'row pattern output table. 29
3.15.1 Row patterpoutptpp8——— — — —— —— - ——————————————— .. 30
3.15.2 Row pattern output declared column list. 30
3.16 Prohibited NeSting.o 31
3.16.1 Row pattern recognition nested within another row pattern recognition. 32
3.16.2 Outer references within a row pattern recognition qUEry.ttt 32
3.16.3 Conventional query nested within row pattern recognition query., 33
3164 RECUISION. oottt e e e e 34
3.16.5 Concatenated row pattern recognition.ttt 34

©ISO/IEC 2016 — All rights reserved Contents

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)

4 Expressonsin MEASURESand DEFINE. e 35
4.1 Row pattern column referenCes. oo e 35
4.2 Running vs. final SemMantics. e 36
4.3 RUNNING VS, FINAL KEYWOITS. . . . o oottt e e e et e e e e 40
4.4 o o € =To T {3 41
45 Row pattern navigation Operations.ttt 42
45.1 PREV anad NEX |, e s .. 42
452 FIRST and LAST . ..o N ... 43
453 Nesting FIRST and LAST within PREV or NEXT............ o BT ...45
4.6 Ordinary row pattern column references reconsidered. 0o ... 46
4.7 MATCH_NUMBER function. N R Y
4.8 CLASSIFIER function. ... O L AT
5 Row pattern recognition: WINDOW clause............ccoovvvinnen Qi ...5h1
5.1 Example of row pattern recognition inawindow. e N ...51
5.2 Summary of the syntax. T ...53
521 Syntactic comparison to windows without row pattern recognition. s\ oo ...54
5.2.2 Syntactic comparison to MATCH_RECOGNIZE. %0 0 i ...5h5
5.3 Row pattern input table. o ...55
54 Row pattern variables and other range variables. &<b6
55 Windows defined on windows. M ... 57
5.6 PARTITION BY. . e e e e e e e ...58
5.7 ORDER BY. . N ...58
5.8 MEASURES.58
5.9 Full window frame and reduced windowsframe.59
591 ROWS BETWEEN CURRENT ROWSAND.59
5.9.2 EXCLUDE NO OTHERS. . . o) et ettt e e e e e e e e e e e ...59
5.10 AFTER MATCH SKIP. . .. e ...60
5.11 INITIAL Vs, SEEK. .. /e e ...60
5.12 PAT TERN. . o ...60
5.13 SUB S E T . o ettt e e e ...61
5.14 DEFRINE. . . (e ...61
5.15 Empty matches and empty reduced window frames.61
5.16 Prohibied Mesting.o ...63
5.16.1| Row-pattern recognition nested within another row pattern recognition.63
5.16.2 | _Outeér references within a row pattern recognition quUery.oo ot63
5.16.3 [_~Conventional query nested within row pattern recognitionquery.64
5.16.4 REBCUISION. oottt e e e e e e e 64
5.16.5 Concatenated row pattern recognition. ittt 65
6 Pattern matching rules. e 67
6.1 Regular eXpression BNgINES.ttt et e 67
6.2 Parenthesized language and preferment. i e 68
6.2.1 A EINAtION. o 69
6.2.2 CONCALENALION. .« . . ettt 69

iv. Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)

6.2.3 QUANtIfICAtION. e 70
6.2.4 EXCIUSION. o 71
6.2.5 AN CNO S, o 72
6.2.6 The BMPLY PN, . . oot 72
6.2.7 Infinite repetitions of empty matches. i i e 72
6.3 Pattern matching in theory and practice. it e e e 75
IO X . .ot e e G .79

©ISO/IEC 2016 — All rights reserved Contents

\Y

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)

Tables
Table Page
1 SAMPIE DAL, . . . oot 8
2 Results of ONE ROW PER MATCH. e i 8
3 esults of ALL ROWS PER MATCH. ot e e .9
4 oW pattern recognition SYNtaxX SUMMAIY.o vttt ettt e et et et N .10
5 nalysis of sample data permitting empty matches. S .17
6 esult of query permitting empty matches. e .18
7 esults of query using SHOW EMPTY ROWS. i A .19
8 esults of query using OMIT EMPTY ROWS. e O e .. 20
9 esults of ALL ROWS PER MATCH.o it e ey e .21
10 riginal and renamed columnnames. A .31
11 rdered row pattern partition of data. e .37
12 UNNING and FINAL in MEASURES. S .. 38
13 rdered row pattern partition of data. O .. 39
14 rdered row pattern partition of data. WD .40
15 xample data set and mappings for FIRST and LAST. e e e .. 44
16 ata set and mappings for nestingexample. e ..45
17 indow Example Query ResuUlts. o N e ..53
18 ow pattern recognition in Windows — SyntaxX SUMMAY. . . . oo oottt e e e e e e ..54
19 esults for empty match and no match. 61
20 omputation of matches and window function results.62
21 IRPUL data. . oo T e .75
22 Nlapping of first element. e .76
23 Nlapping of second element. ol o . 76
24 Nlapping of third element. 0 .77

vi Row Pattern Recognition in SQL

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members
of ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. 1SO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of
information technology, 1ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The
in thq
of dd
I1SO/

Attern
right
paten
ISO |

Any

constitute an endorsement.

For g
as wi
Tech

The
mang

A list

rocedures used to develop this document and those intended for its further maintenance are desq
ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different
cument should be noted. This document was drafted in accordance with the editorial ‘rules g
EC Directives, Part 2 (see www.iso.org/directives).

tion is drawn to the possibility that some of the elements of this document may-be the subject of g
. 1SO and IEC shall not be held responsible for identifying any or all such patent rights. Details ¢
t rights identified during the development of the document will be in_the-Introduction and/or g
ist of patent declarations received (see www.is0.org/patents).

trade name used in this document is information given for the-convenience of users and dog

h explanation on the meaning of ISO specific terms and €xpressions related to conformity assess
[l as information about ISO's adherence to the World Trade Organization (WTQ) principles
nical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

committee responsible for this document.is<4SO/IEC JTC 1, Information technology, SC 32,
gement and interchange.

of all the parts in the 1SO 19075 series, can be found on the ISO website.

ribed

types
f the

atent
f any
n the

S not

ment,
n the

Data

©ISO/IEC 2016 — All rights reserved

Foreword vii

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)

I ntroduction

This Technical Report discusses the syntax and semantics for recognizing patterns in rows of a table, as defined
in [1SO9075-2].

[1SO9p+5-2}defines-two-featurestegardingrow-patierrrecogrition:
— Fgature R010, “Row pattern recognition: FROM clause”
— Fqature R020, “Row pattern recognition: WINDOW clause”

These fwo features have considerable syntax and semantics in common, the principle différence being whether
the syntax is placed in the FROM clause or in the WINDOW clause.

The organization of this Technical Report is as follows:
1) Clause 1, “Scope”, specifies the scope of this Technical Report.
2) Clause 2, “Normative references”, identifies standards that are referenced by this Technical Report.

3) Clause 3, “Row pattern recognition: FROM clause”, discusses keature R010, “Row pattern recognjfition:
FIROM clause”.

4) Clause 4, “Expressions in MEASURES and DEFINE” «discusses scalar expression syntax in row pattern
matching.
5) Clause 5, “Row pattern recognition: WINDOW clause”, discusses Feature R020, “Row pattern recognition:

WINDOW clause”. Clause 5, “Row pattern recagnition: WINDOW clause”, does not duplicate material
alfeady presented in Clause 3, “Row pattern‘recognition: FROM clause” and Clause 4, “Expressions in
MEASURES and DEFINE”, which should'be read even if the reader is only interested in Feature R020,
“Row pattern recognition: WINDOW.glause”.

6) Clause 6, “Pattern matching rules™,-discusses the formal rules of pattern matching.

viii Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

TECHNICAL REPORT ISO/IEC TR 19075-5:2016

| nfor mation technology — Database languages — SQL Technical Reports —

Part 5:
Row|Pattern Recognition in SQL

1 Stope

This Tgchnical Report discusses the syntax and semantics for recognizing patterns:in_rows of a table, as defined
in [1IS®9075-2].

©ISO/IEC 2016 — All rights reserved Scope 1

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)

(Blank page)

2 Row Pattern Recognition in SQL

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
2.1 1SO and |EC standards

2 Normativereferences

The fo

lowing referenced documents are indispensable for the application of this document For dated references,

only the edition cited applies. For undated references, the latest edition of the referenced document (ingluding

any anp

2.1

[1SQ9075-2] ISO/IEC 9075-2:2016, Information technology — Database languages — SQL — Part|2:
Foundation (SQL/Foundation).

endments) applies.

| SO and | EC standards

©ISO/IEC 2016 — All rights reserved Normativereferences 3

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)

(Blank page)

4 Row Pattern Recognition in SQL

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.1 Example of ONE ROW PER MATCH

3 Row pattern recognition: FROM clause

Featur

o R010 “Row pattern recognition: EROM clause” of [1SQ9075-2] enhances the capability of the

FROM

clause
is disc
There
1) O

2) A
to

3.1

witha MATCH_RECOGNIZE clause to specify a row pattern. The syntax and semantics of a row.
Issed through examples presented throughout this Clause of this Technical Report.

bre two principal variants of the MATCH_RECOGNIZE clause:
NE ROW PER MATCH, which returns a single summary row for each match of the pattern (the d

| L ROWS PER MATCH, which returns one row for each row of each match. There are three subo
control whether to also return empty matches or unmatched rows.

Example of ONE ROW PER MATCH

The fo

NQTE 2 — All examples in this Technical Report use mixed-case"identifiers for the names of tables, columns, etc., wher
key words are shown in uppercase. Unquoted identifiers are actlally equivalent to uppercase, so the column headings of
resplts will be shown with the identifiers converted to uppettase.

It is dgsired to partition the data by Symbol, sort it into increasing Tradeday order, and then detect max
“V” patterns in Price: a strictly falling price;followed by a strictly increasing price. For each match to
patterr], it is desired to report the starting-price, the price at the bottom of the V, the ending price, and th
averagp price across the entire pattern.

The fo

SELEC

FROM 1

lowing query may be used'to solve this pattern matching problem:
[M.Symbol, /* ticker symbol */
-Matchno, /*(sequential match number */
.Startp, /% starting price */
.Bottomp,\\/* bottom price */
-Endp,{/>* ending price */
-Avgp /* average price */
[1cker

MATCH_RECOGNIZE (

PARTITION BY Symbol

===

=

Dattern

efault).

ptions,

lowing example illustrates MATCH_RECOGNIZE with the'ONE ROW PER MATCH option. LLet
Ticker|(Symbol, Tradeday, Price) be a table with three columns.representing historical stock prices. Sy
is a character column, Tradeday is a date column, and Prie@is’a numeric column.

mbol

bas SQL
sample

imal
h\V
e

©ISO/IE

ORDER BY Tradeday

MEASURES MATCH_NUMBER() AS Matchno,
A_Price AS Startp,
LAST (B-Price) AS Bottomp,
LAST (C.Price) AS Endp,
AVG (U.Price) AS Avgp

ONE ROW PER MATCH

AFTER MATCH SKIP PAST LAST ROW

PATTERN (A B+ C+)

SUBSET U = (A, B, C)

C 2016 — All rights reserved Row pattern recognition: FROM clause 5

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.1 Exampleof ONE ROW PER MATCH

DEFINE /* A defaults to True, matches any row */
B AS B.Price < PREV (B.Price),
C AS C.Price > PREV (C.Price)
) AS M

In the example above, the principal syntactic elements of MATCH_RECOGNIZE are presented on separate
lines. In this example:

— Tickeristherameo rputtablethisexampletherow patterming abteisatable or
view. The row pattern input table may also be a derived table (in-line view)

— ATCH_RECOGNIZE introduces the syntax for row pattern recognition.

— PARTITION BY specifies how to partition the row pattern input table. The PARTITIONBY clausg is a
ligt of columns of the row pattern input table. This clause is optional; if omitted, there are no row pattern
pdrtitioning columns, and the entire row pattern input table constitutes a single roww pattern partitign.

— ORDER BY specifies how to order the rows within row pattern partitions. The ORDER BY clausq is a
ligt of columns of the row pattern input table. This clause is optional; if emitted, the order of rows jn row
pdttern partitions is completely non-determinstic. However, since nonédeterministic ordering will glefeat
the purpose of most row pattern recognition, the ORDER BY clause will usually be specified.

— MEASURES specifies row pattern measure columns, whose values-are calculated by evaluating expréssions

reJated to the match. The first row pattern measure column in this example uses the special nullary function
ATCH_NUMBER(), whose value is the sequential number of a match within a row pattern partifion.

Tipe third and fourth row pattern measure columns in this.example use the LAST operation, which ¢btains

the value of an expression in the last row that is mapped by a row pattern match to a row pattern variable.

LAST is one of the row pattern navigation operations introduced by [ISO9075-2], discussed in Subcladise 4.5,

Tipe result of the MATCH_RECOGNIZE clause is called the row pattern output table. When ONE|ROW
PER MATCH is specified, as in this example, the row pattern output table has one column for each row
pdttern partitioning column and one_column for each row pattern measure column.

— ONE ROW PER MATCH specifies that the row pattern output table will have a single row for each|match
thpt is found in the row pattern.input table.

— AFTER MATCH SKIPclause specifies where to resume looking for the next row pattern match after
successfully finding amatch. In this example, AFTER MATCH SKIP PAST LAST ROW specifieq that
pdttern matching will-resume after the last row of a successful match.

— PATTERN spegtifies the row pattern that is sought in the row pattern input table. A row pattern is a fegular
eXpressionusing primary row pattern variables. In this example, the row pattern has three primary|row
pdttern variables (A, B, and C).

— SWBSET defines the union row pattern variable U as the union of the primary row pattern variables A, B,

ar
anec:

— DEFINE specifies the Boolean condition that defines a primary row pattern variable; a row must satisfy
the Boolean condition in order to be mapped to a particular primary row pattern variable. This example
uses PREV, a row pattern navigation operation that evaluates an expression in the previous row. If a primary
row pattern variable is not defined in the DEFINE clause, then the definition defaults to a condition that
is always true, meaning that any row can be mapped to the primary row pattern variable.

— AS M defines the range variable M to associate with the row pattern output table. This clause is optional;
if omitted, then an implementation-dependent range variable is used. Since an implementation-dependent

6 Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

1)

2)
3)
4)

5)

6)

7)

Here i
The sal
pattern

©ISO/IEC 2016 — All rights reserved

ISO/IEC TR 19075-5:2016(E)

3.1 Example of ONE ROW PER M

ATCH

range variable is unknowable to the query writer, the AS clause should not be omitted if there are any other
tables in the FROM clause aside from the MATCH_RECOGNIZE.

The processing of MATCH_RECOGNIZE is as follows:

The row pattern input table is partitioned according to the PARTITION BY clause. Each row pattern par-
tition consists of the set of rows of the row pattern input table that are equal (more precisely, not distinct)
on the row pattern partitioning columns.

Ej
E:

P3
p3g
m
m

ch row pattern partition is ordered according to the ORDER BY clause.
ich ordered row pattern partition is searched for matches to the PATTERN.

ttern matching operates by seeking the match at the earliest row, considering the raws'in a row g
rtition in the order specified by the ORDER BY. When there is more than one match at a row, th
pst preferred match is taken. The precise rules of pattern matching are discussed-in Clause 6, “P3
ptching rules”.

A
e

fter a match is found, row pattern matching calculates the row pattern measure columns, which a
pressions defined by the MEASURES clause.

attern
en the
ttern

Using ONE ROW PER MATCH, as shown in the example, row pattern recognition generates one ffow for

edch match that is found.

T

Pg
at

rtition after a non-empty match has been found. In the example above, row pattern matching res
the next row after the rows mapped by a match (AFTER MATCH SKIP PAST LAST ROW).

sample data for one row pattern partition of Ticker, shown sorted according to the ORDER BY
mple data contains two matches to the pattern&indicated by arrows showing the mapping to prima
variables in each match.

e AFTER MATCH SKIP clause determines where row/pattern matching resumes within a row pattern

LIMmes

clause.
ry row

Row pattern recognition: FROM clause 7

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.1 Exampleof ONE ROW PER MATCH

Table 1 — Sample Data

SYMBOL | TRADEDAY | PRICE
XYZ 2009-06-08 50
XYZ 2009-06-09 | 60 SA]
XYZ 2009-06-10 | 49 -B ||
XYZ 2009-06-11 40 -B }- first match
XYZ 2009-06-12 35 -B |
XYZ 2009-06-15 | 45 -C |
XYz 2009-06-16 | 45
XYZ 2009-06-17 45 -A]
XYZ 2009-06-18 | 43 ~B | |
XYZ 2009-06-19 | 47 - C | }second match
XYZ 2009-06-22 | 52 -C ||
XYZ 2009-06-23 70 -C J
XYZ 2009-06-24 60
The repult of the example for this.row pattern partition is:
Table 2 — Results of ONE ROW PER MATCH
SYMBOL MATCHNO | STARTP BOTTOMP | ENDP AVGP
XYZ 1 60 35 45 45.8
XYZ 2 45 43 70 51.4

3.2 Exampleof ALL ROWSPER MATCH

The previous example can be modified slightly to illustrate ALL ROWS PER MATCH, as follows:

SELECT M.Symbol, /* ticker symbol */
M.Matchno, /* sequential match number */
M.Tradeday, /* day of trading */

8 Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.2 Exampleof ALL ROWSPER MATCH

-Price, /* price on day of trading */

-Classy, /* classifier */

.Startp, /* starting price */

-Bottomp, /* bottom price */

-Endp, /* ending price */

-Avgp /* average price */

FROM Ticker

MATCH_RECOGNIZE (

PARTITION BY Symbol

ORDER BY Tradeday

MEASURES MATCH_NUMBER() AS Matchno,
CLASSIFIER() AS Classy,
A_Price AS Startp,
FINAL LAST (B-Price) AS Bottomp,
FINAL LAST (C.Price) AS Endp,
FINAL AVG (U.Price) AS Avgp

ALL ROWS PER MATCH

AFTER MATCH SKIP PAST LAST ROW

PATTERN (A B+ C+)

SUBSET U = (A, B, C)

DEFINE /* A defaults to True, matches any row */

B AS B.Price < PREV (B.Price),
C AS C.Price > PREV (C.Price)

===

=

) AS M

Note that the second row pattern measure column in this example shows the use of the special function
CLASBIFIER(), which returns the name of the row patterncvariable to which a row is mapped. CLASS|FIER
is discpissed in Subclause 4.8, “CLASSIFIER function™

Here i$ the result of this query on the sample data;

Table 3 — Resultsof ALL ROWS PER MATCH

SYM MATCH | TRADEDAY [<PRICE | CLASSY | STARTP | BOTTOMP | ENDP | AYGP
BOW NO

XYZ 1 2009-06-09 60 A 60 35 45 45(8
XY 4 1 2009-06-10 49 B 60 35 45 45(8
XYZ 1 2009-06-11 40 B 60 35 45 458
XY 4 1 2009-06-12 35 B 60 35 45 458
XYZ 1 2009-06-15 45 Cc 60 35 45 45(8
XYZ 2 2009-06-17 45 A 45 43 70 51.4
XYZ 2 2009-06-18 43 B 45 43 70 514
XYZ 2 2009-06-19 47 C 45 43 70 51.4
XYZ 2 2009-06-22 52 Cc 45 43 70 51.4
XYZ 2 2009-06-23 70 Cc 45 43 70 51.4

©ISO/IEC 2016 — All rights reserved Row pattern recognition: FROM clause 9

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.2 Exampleof ALL ROWSPER MATCH

ALL ROWS PER MATCH differs from ONE ROW PER MATCH in the following respects:
1) ALL ROWS PER MATCH returns one row for each row of each match of the pattern.

2) The row pattern output table has a column corresponding to every column

of the row pattern input table,

not just the row pattern partitioning columns. (Note the column M.Price in the SELECT list. This is a

column of the row pattern input table, not a row pattern measure column.)
3)

antics, indicated by the keywords RUNNING and FINAL.

final

4) ALL ROWS PER MATCH provides three suboptions for handling empty matches and unmatched jrows.
These options are not illustrated in this example; see Subclause 3.10.1, “Handling empty‘matches’|, and

3.3 | Summary of the syntax

Subclause 3.10.2, “Handling unmatched rows”, for examples of these options.

The cdmplete syntax for row pattern recognition in the FROM clause involves the following components:

Table 4 — Row pattern recognition syntax summary

Syntagtic component Optional? | Default Crossreference

row pattern input table no — Subclause 3.4, “The rowy pat-
tern input table”

row pgttern input name yes implementation-dependent Subclause 3.4.1, “The rgw pat-
tern input name”

row pattern input declared col- | yes none Subclause 3.4.2, “The rgw pat-

umn list tern input declared colunpn list”

MATCH_RECOGNIZE no — Subclause 3.5,
“MATCH_RECOGNIZE”

PART|TION BY yes row pattern input table consti- | Subclause 3.6, “PARTITION

tutes one row pattern partition

BY”

ORDER BY yes non-deterministic ordering in
each row pattern partition

Subclause 3.7, “ORDER BY”

MEASURES Ves none

Subclause 3.9, “MEASURES”

ONE ROW PER MATCH or | yes ONE ROW PER MATCH
ALL ROWS PER MATCH

Subclause 3.10, “ONE ROW
PER MATCH vs. ALL ROWS
PER MATCH”

AFTER MATCH SKIP yes AFTER MATCH SKIP PAST
LAST ROW

Subclause 3.11, “AFTER
MATCH SKIP”

10 Row Pattern Recognition in SQL

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)

3.3 Summary of the syntax
Syntactic component Optional? | Default Crossreference
PATTERN no — Subclause 3.12, “PATTERN”
SUBSET yes no explicit union row pattern | Subclause 3.13, “SUBSET”
variables
DEFINE no — Subclause 3.14, “DEFINE”
row pattern output name yes implementation-dependent Subclause 3.15.151*Row pattern
output name”

row pattern output declared yes none Subclause 3.15.2, “Row pattern
colump list outputdeclared columnilist”
3.4 | Therow pattern input table
The row pattern input table is the input argument to MATCH_RECOGNIZE. In the examples above, the row
patterr] input table was Ticker, which is a table or view, or perhapsa named query (defined in a WITH cfause).
The row pattern input table can also be a derived table (alsoknown as in-line view). For example:
FROM (SELECT S_Name, T.Tradeday, T.Price

FROM Ticker T, SymbolNames S

WHERE T.Symbol = S.Symbol)

MATCH_RECOGNIZE (...) AS M
The row pattern input table may not be a <jeired table>. The work-around is to use a derived table, sudh as:
FROM (SELECT * FROM A LEFT OUTER JOIN B ON (A.X = B.Y))
ATCH_RECOGNIZE (...) ASCM

Note that column names in the.row pattern input table must be unambiguous, since it is impossible to us¢ range
variables within the MATCH.RECOGNIZE clause to disambiguate. If the row pattern input table is a base
table gr a view, this is not a problem, since SQL does not allow ambiguous column names in a base tabjle or
view. This is only an issue when the row pattern input table is a derived table.
For example, consider a join of two tables, Emp and Dept, each of which has a column called Name. The fol-
lowind is a syntax error:
FROM (SELECT D.Name, E.Name, E_Empno, E.Salary

EROM Dept D, Emp E

WHERE D.Deptno = E.Deptno)

MATCH_RECOGNIZE (

PARTITION BY D.Name
-)

The preceding example is an error because the range variable D is not visible within the MATCH_RECOGNIZE

(the sc

ope of D is just the derived table). Rewriting like this is no help:

FROM (SELECT D.Name, E.Name, E.Empno, E.Salary

©ISO/IEC 2016 — All rights reserved

FROM Dept D, Emp E

Row pattern recognition: FROM clause 11

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.4 Therow pattern input table

WHERE D.Deptno = E.Deptno)
MATCH_RECOGNIZE (
PARTITION BY Name

-)

This rewrite eliminates the use of the range variable D within the MATCH_RECOGNIZE. However, now the
error is that Name is ambiguous, because there are two columns of the derived table called Name. The way to
handle this is to disambiguate the column names within the derived table itself, like this:

FROM (SELECT D.Name AS DName, E._Name AS EName,
E_Empno, E.Salary

FROM Dept D, Emp E

WHERE D.Deptno = E.Deptno)

WATCH_RECOGNIZE (

PARTITION BY DName

-)

3.4.1 | Therow pattern input name

Optiorfally, a correlation name for the row pattern input table may, be declared, as in this example (equinvalent
to the gxample in Subclause 3.1, “Example of ONE ROW PER MATCH”):

SELECT M.Symbol, /* ticker symbol */
M.Matchno, /* sequential match numberi */
M.Startp, /* starting price */
M.Bottomp, /* bottom price */

M.Endp, /* ending price */:
M.Avgp /* average price */

FROM Ticker AS T
MATCH_RECOGNIZE (
PARTITION BY T.Symbol
ORDER BY T.Tradeday
MEASURES MATCH_NUMBER() AS Matchno,
A_Price AS\Startp,
LAST (B.Price) AS Bottomp,
LAST..(C.Price) AS Endp,
AVG (U.Price) AS Avgp
ONE ROW PER)MATCH
AFTER MATCH SKIP PAST LAST ROW
PATTERN-Y(A B+ C+)
SUBSET' U = (A, B, C)
DEFINE /* A defaults to True, matches any row */
B AS B_Price < PREV (B.Price),
C AS C.Price > PREV (C.Price)

) AS W

The row pattern input name in this example is T, as defined by the syntax “Ticker AS T”. It is also possible to
omit the noise word AS, like this: “Ticker T.

Specifying the row pattern input name is optional. The examples in Subclause 3.1, “Example of ONE ROW
PER MATCH?”, and Subclause 3.2, “Example of ALL ROWS PER MATCH?”, do not show an explicit row
pattern input name.

When the row pattern input name is not specified, the following defaults apply:

12 Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.4 Therow pattern input table

1) If the row pattern input table is a base table, view, or query name (the name of a query defined ina WITH
clause), then the table name, view name or query name is the default row pattern input name.

2) Otherwise, an implementation-dependent row pattern input name, different from any other range variable
in the query, is implicit. In practice, this means that the row pattern input name is unknowable and cannot
be referenced elsewhere in the query.

The scope of the row pattern input name is the PARTITION BY and ORDER BY clauses of the
MAT({H_RECOGNIZE clause. This means that the row pattern input name can be used in the following-cgntexts:

1) Tao qualify column names in the PARTITION BY clause.
2) Tg qualify column names in the ORDER BY clause.

The eample above illustrates both of these uses.

The rojv pattern input name cannot be referenced in the MEASURES or DEFINE clauses, nor elsewherg in the
query, [such as the WHERE clause or the SELECT list.
3.4.2 | Therow pattern input declared column list

If an ekplicit row pattern input name is specified, it may be followed by a parenthesized list of column pames,
as in this example:

SELECT M.Sym, /* ticker symbol */
M.Matchno, /* sequential match number */
M.Startp, /* starting price */
M.Bottomp, /* bottom price */

M.Endp, /* ending price *¥
M.Avgp /* average price/*/

FROM Ticker AS T (Sym, Td, Pr)
MATCH_RECOGNIZE (
PARTITION BY T.Sym
ORDER BY T.Td
MEASURES MATCH_NUMBER() AS Matchno,
A_Pr AS ‘Startp,
LASTN(B-Pr) AS Bottomp,
KAST (C.Pr) AS Endp,
AVG (U.Pr) AS Avgp
ONE ROWNPER MATCH
AFTER\'MATCH SKIP PAST LAST ROW
PATTERN (A B+ C+)
SUBSET U = (A, B, C)
DEFINE /* A defaults to True, matches any row */

PR_AC D D . PDREVL D D\

L= a=n | eV o= 1)5

C AS C.Pr > PREV (C.Pr)
) AS M

The parenthesized list of column names (Sym, Td, Pr) is called the row pattern input declared column list. The
row pattern input declared column list may be used to change the names of the columns of the row pattern input
table. There must be exactly the same number of column names in the list as there are columns in the row pattern
input table. In this example, Symbol has been renamed to Sym, Tradeday has been renamed to Td, and Price

has been renamed to Pr. Consequently, the columns cannot be referenced as Symbol, Tradeday, or Price within
the MATCH_RECOGNIZE; instead, they must be referenced by their new names, Sym, Td, and Pr. Note that

©ISO/IEC 2016 — All rights reserved Row pattern recognition: FROM clause 13

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.4 Therow pattern input table

this also changes the default names of the columns in the row pattern output table. Thus, in the SELECT list,
the first item must be M.Sym, because the input column names Symbol was renamed to Sym, which becomes
the name of the corresponding output column.

35 MATCH_RECOGNIZE

MATJH_RECOGNIZE is the keyword that introduces the syntax for row pattern recognition in the\FROM
clause| Syntactically, MATCH_RECOGNIZE is a postfix operator following the row pattern input-tabl¢. The
MATJH_RECOGNIZE keyword is followed by a parenthesized list of syntactic componentsithat collectively
descrilpe the row pattern recognition operation.

3.6 | PARTITION BY

PARTITION BY is used to specify that the rows of the row pattern input:table are to be partitioned by pne or
more golumns. Note that the column names in the PARTITION BY may be'unqualified, or they may be qualified
by the|row pattern input name. See the examples in Subclause 3.4,1,."“The row pattern input name”.

If therg is no PARTITION BY, then all rows of the row pattern input table constitute a single row pattefn par-
tition.

3.7 | ORDER BY

ORDHR BY is used to specify the order of rows within a row pattern partition. The ORDER BY clausg of a

MATJH_RECOGNIZE is similar to the-ORDER BY clause of a cursor. As with the PARTITION BY ¢lause,
colump names may be unqualified, or, they may be qualified by the row pattern input name. See the exgmples
in Subtlause 3.4.1, “The row pattern input name”.

If the @rder of two rows in a row-pattern partition is not determined by the ORDER BY, then the result|of
MATJH_RECOGNIZE issnon-deterministic.

NQTE 3 — Syntactically, the row pattern output table is always regarded as non-deterministic because there is no way fqr the

qugry engine to deduceat compile time whether the ordering is total. This means that MATCH_RECOGNIZE cannot bejused in
contexts that mustheideterministic, such as check constraints and assertions. However, the query author can use ORDER BY to
inspre that the.query is sufficiently deterministic for the author's intended purpose.

3.8 LRow pattern variables

Row pattern variables are range variables whose scope is limited to a MATCH_RECOGNIZE clause. As range
variables, row pattern variables are used to qualify column references, in either the scalar expression of a row
pattern measure column, or the Boolean condition of a DEFINE.

There are two kinds of row pattern variables:

1) Primary row pattern variables, which are declared in the PATTERN and defined by an associated Boolean
condition specified in the DEFINE clause.

14 Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.8 Row pattern variables

2) Union row pattern variables, which are declared in the SUBSET clause as a union of a list of primary row
pattern variables. The primary row pattern variables are called components of the union row pattern variable.

A row pattern variable may not be both a primary row pattern variable and a union row pattern variable. This
means that a row pattern variable that is declared in PATTERN may not also be declared on the left hand side
of a SUBSET.

Informally, a match consists of a set of contiguous rows in a row pattern partition of the row pattern input table.
(For ajmore formal treatment, see Clause 6, “Pattern matching rules”.) Each row of the match is mappgd to a

primany row pattern variable. The mapping of rows to primary row pattern variables must conform to'the fegular
exprespion in the PATTERN clause, and is further constrained to insure that all Boolean conditions’in the
DEFINE clause are true.

Thus rpws are mapped to row pattern variables. Conversely, each row pattern variable RPV has a set of{rows
that arg mapped to RPV. For example, given:

PATTERN (A+ (B+ | C+) D)
SUBSET S = (B, D)

Suppoge that consecutive rows R3, R4, Rs, Rg, and R; are mapped as follows:

Ry + A

R, b A

Rs 1 B

Rs B

R;+D
Then:
— thp set of rows mapped to A is { R3y R4 },
— thp set of rows mapped to B1S{ Rs, Rg },
— th set or rows mapped.te C is empty, and
— thp set of rows mappedto D is { R; }.

The sef of rows mapped to a union row pattern variable URPV can be obtained as the set union of rows npapped
to each comporient of URPV. In this example:

— the set.of rows mappedto Sis{R;, Re JU{R; }={Rs, Rs, R7 }.

There rsatways omeTmpticitumonm Tow patter variabte; tatted theumiversat Tow pattermvariabte;, definmed as
the union of all primary row pattern variables. Thus, every row of a match is mapped to the universal row pattern
variable. The universal row pattern variable is used to implicitly qualify unqualified column reference within
the MEASURES or DEFINE clauses. There is no syntax available to the user to denote the universal row pattern
variable. The query writer may, of course, define an explicit union row pattern variable that is the union of all
primary row pattern variables. (The example in Subclause 3.1, “Example of ONE ROW PER MATCH?”, illustrates
this technique.)

©ISO/IEC 2016 — All rights reserved Row pattern recognition: FROM clause 15

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.9 MEASURES

39 MEASURES

The MEASURES clause defines row pattern measure columns, which are columns of the row pattern output
table whose value is computed by evaluating an expression related to a particular match. Note that this facility
extends the scalar expression syntax of [ISO9075-2], and provides special semantics for evaluating scalar
expressions in the context of a row pattern match. This is discussed in Clause 4, “Expressions in MEASURES
and DEEINE”

NQTE 4 — The MEASURES clause in a window definition does not define columns; instead, it defines named expressions which
arelaccessed using a variant of the window function syntax, called row pattern measure functions. “Row pattern measure|’ is the
gerjeric term for row pattern measure columns and row pattern measure functions, whose values are computed using the fame
rulgs.

3.10[ONE ROW PER MATCH vs.ALL ROWSPER MATCH
ONE ROW PER MATCH indicates that the result has one row for each mateh:-€olumns of this row are defined
by the|PARTITION and MEASURES clauses. This is the default.

ALL ROWS PER MATCH indicates that the result has one row for-€ach row of each match. (It is possible to
exclude some rows using the exclusion syntax {- -} in the PATTERN; see Subclause 3.12.2, “Excludjng
portions of the pattern”.)

ALL ROWS PER MATCH has three suboptions:

— ALL ROWS PER MATCH SHOW EMPTY MATCHES
— ALL ROWS PER MATCH OMIT EMPTY MATCHES
— ALL ROWS PER MATCH WITH UNMATCHED ROWS

These pptions are explained in the following subsections.

3.10.1 Handling empty matches

Some patterns permit empty matches. For example:
PATTERN (A*)

can be|matched by zero or more rows that are mapped to A.
An empty/match does not map any rows to primary row pattern variables; nevertheless, an empty match has a
starting-rowor-exampletherecan-be-afempty-matehatthe-firstrow-of-arow pattera-partittorn,an-empty
match at the second row of a row pattern partition, etc. An empty match is assigned a sequential match number,
based on the ordinal position of its starting row, the same as any other match.

When using ONE ROW PER MATCH, an empty match results in one row of the row pattern output table. The
row pattern measures for an empty match are computed as follows:

— The value of MATCH_NUMBER() is the sequential match number of the empty match.
— Any COUNT is 0.

16 Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)

3.10 ONE ROW PER MATCH vs. ALL ROWSPER MATCH

— Any other aggregate, row pattern navigation operation, or ordinary row pattern column reference is null.

For example, the example in Subclause 3.1, “Example of ONE ROW PER MATCH?”, can be modified to permit
empty matches, as follows:

SELECT M.Symbol, /* ticker symbol */
M.Matchno, /* sequential match number */
/* starting price */

M.Firstp,

FROM 1

Here t

M.Lastp
[icker

DEFINE

) AS M

/* ending price */

MATCH_RECOGNIZE (

PARTITION BY Symbol

ORDER BY Tradeday

MEASURES MATCH_NUMBER() AS Matchno,
FIRST A_Price AS Firstp,
LAST (A.Price) AS Lastp
ONE ROW PER MATCH
AFTER MATCH SKIP PAST LAST ROW
PATTERN (A*)

A AS A.Price > PREV (A.Price)

now amalyzed as follows:

Table 5— Analysis of sample data per mitting empty matches

he pattern has been changed to A*, and is used to detect runs of increasing prices. The sample data is

SYMBOL | TRADEDAY_J|PBRICE

XYZ 2009-06-08 50 match #1 (empty)
XYz 2009-06-09 | 60 - A | match #2

XYZ 2009-06-10 49 match #3 (empty)
XYZ 2009-06-11 40 match #4 (empty)
X¥Z 2009-06-12 35 match #5 (empty)
XYZ 2009-06-15 | 45 - A | match #6

XYZ 2009-06-16 45 match #7 (empty)
XYZ 2009-06-17 45 match #8 (empty)
XYz 2009-06-18 43 match #9 (empty)
XYZ 2009-06-19 | 47 A |

XYZ 2009-06-22 | 52 —~A | } match #10
XYZ 2009-06-23 70 -A _]

©ISO/IEC 2016 — All rights reserved

Row pattern recognition: FROM clause 17

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.10 ONE ROW PER MATCH vs. ALL ROWSPER MATCH

SYMBOL | TRADEDAY | PRICE

XYZ 2009-06-24 60

match #11 (empty)

The result of the preceding query on the sample row pattern partition is:

In the
match

As for
match

1) A
Si

2) A

Table 6 — Result of query permitting empty matches

SYMBOL | MATCHNO | FIRSTP | LASTP
XYZ 1

XYZ 2 60 60
XYZ 3

XYZ 4

XYZ 5

XYZ 6 45 45
XYZ 7

XYZ 8

XYZ 9

XYZ 10 47 70
XYZ 11

PS.

breceding result, note how-the row pattern measures other than the match number are null for empty

ALL ROWS PER MATCH, the question arises of whether to generate a row of output for an emjpty
seeing that there are no rows in the empty match. To govern this, there are two options:

| | ROWS\PER MATCH SHOW EMPTY MATCHES: with this option, any empty match genergtes a
hgle rowsin the row pattern output table.

| LROWS PER MATCH OMIT EMPTY MATCHES: with this option, an empty match is omitted from

th

erow-pattermoutput tabte(Thismay cause gaps inthe-sequentiab-matchnumbering?)

ALL ROWS PER MATCH defaults to SHOW EMPTY MATCHES. Using this option, an empty match generates
one row in the row pattern output table. In this row:

— The value of a classifier function is null.

— The value of MATCH_NUMBER() is the sequential match number of the empty match.

— The value of any ordinary row pattern column reference is null.

18 Row Pattern Recognition in SQL

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.10 ONE ROW PER MATCH vs. ALL ROWSPER MATCH

— The value of any aggregate or row pattern navigation operation is computed using an empty set of rows
(so any COUNT is 0, and all other aggregates and row pattern navigation operations are null).

— The value of any column corresponding to a column of the row pattern input table is the same as the cor-
responding column in the starting row of the empty match.

The following example alters the preceding example slightly, to use ALL ROWS PER MATCH SHOW EMPTY
MATCHES:

SELECT M.Symbol, /* ticker symbol */
M.Matchno, /* sequential match number */
M.Tradeday, /* day of trading */
M.Price, /* price on day of trading */
M.Classy, /* classifier */
M.Firstp, /* starting price */
M.Lastp /* ending price */

FROM Ticker
MATCH_RECOGNIZE (
PARTITION BY Symbol
ORDER BY Tradeday
MEASURES MATCH_NUMBER() AS Matchno,
CLASSIFIER AS Classy,
FINAL FIRST (A.Price) AS Firstp,
FINAL LAST (A.Price) AS Lastp
ALL ROWS PER MATCH SHOW EMPTY MATCHES
AFTER MATCH SKIP PAST LAST ROW
PATTERN (A*)
DEFINE A AS A.Price > PREV (A.Price)
) AS M

The repult of the preceding query on the sample row pattern partition is:

Table 7 — Resultsof query using SHOW EMPTY ROWS

SYMBOL '[\\|/IOATCH TRADEDAY | PRICE | CLASSY | FIRSTP | LASTP
XYZ 1 2009-06-08 50

XYZ 2 2009-06-09 60 A 60 60
XYZ 3 2009-06-10 49

XXYZ 4 2009-06-11 40

XYZ 5 2009-06-12 35

XYZ 6 2009-06-15 45 A 45 45
XYZ 7 2009-06-16 45

XYZ 8 2009-06-17 45

XYZ 9 2009-06-18 43

©ISO/IEC 2016 — All rights reserved Row pattern recognition: FROM clause 19

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.10 ONE ROW PER MATCH vs. ALL ROWSPER MATCH

SYMBOL | MATCH | TRADEDAY | PRICE | CLASSY | FIRSTP | LASTP
NO

XYZ 10 2009-06-19 47 A 47 70

XYZ 10 2009-06-22 52 A 47 70

XYZ 10 2009-06-23 70 A 47 70

XYZ 11 2009-06-24 60

If, insttad, ALL ROWS PER MATCH OMIT EMPTY MATCHES were used, the result-would lack the rows
for the|empty matches, like this:

Table 8 — Results of query using OMIT EMPTY ROWS

SYMBOL I\N/IOATCH TRADEDAY | PRICE | CLASSY . {YFIRSTP | LASTP
XYZ 2 2009-06-09 60 A 60 60
XYZ 6 2009-06-15 45 A 45 45
XYZ 10 2009-06-19 47 A 47 70
XYZ 10 2009-06-22 52 A 47 70
XYZ 10 2009-06-23 70 A 47 70

Note the gaps in the match numbering;“also, the final empty match (hnumber 11) is undetectable becausg there
are no[non-empty matches followingjit.

3.10.4 Handling unmatched rows

Some fows of thesow pattern input table may be neither the starting row of an empty match, nor mapped by a
non-empty match,"Such rows are called unmatched rows.

The ogtionALL ROWS PER MATCH WITH UNMATCHED ROWS shows both empty matches and unniatched
rows. Empty matches are handled the same as with SHOW EMPTY MATCHES. When displaying an unnfatched
row, altrowpattermmeasuresare nuh,somewhat anatogous tothe nut=extended sideof amrouterjoim— hus
COUNT and MATCH_NUMBER may be used to distinguish an unmatched row from the starting row of an
empty match. The exclusion syntax {- -1} is prohibited as contrary to the spirit of WITH UNMATCHED
ROWS.

The example in Subclause 3.2, “Example of ALL ROWS PER MATCH?”, can be used to illustrate WITH
UNMATCHED ROWS. The change in the query syntax is:

SELECT M.Symbol, /* ticker symbol */
M.Matchno, /* sequential match number */

20 Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.10 ONE ROW PER MATCH vs. ALL ROWSPER MATCH

M.Tradeday, /* day of trading */

M.Price, /* price on day of trading */
M.Classy, /* classifier */

M.Startp, /* starting price */
M.Bottomp, /* bottom price */

M.Endp, /* ending price */

M.Avgp /* average price */

FROM Ticker
MATCH_RECOGNTZE (
PARTITION BY Symbol
ORDER BY Tradeday
MEASURES MATCH_NUMBER() AS Matchno,
CLASSIFIER AS Classy,
A_Price AS Startp,
FINAL LAST (B.Price) AS Bottomp,
FINAL LAST (C.Price) AS Endp,
FINAL AVG (U.Price) AS Avgp
ALL ROWS PER MATCH WITH UNMATCHED ROWS
AFTER MATCH SKIP PAST LAST ROW
PATTERN (A B+ C+)
SUBSET U = (A, B, C)
DEFINE /* A defaults to True, matches any row */
B AS B.Price < PREV (B.Price),
C AS C.Price > PREV (C.Price)

) AS M

and th¢ result on the data in the sample row pattern partition is:

Table 9 — Resultsof ACL ROWS PER MATCH

SYM MATCH | TRADEDAY [PRICEY CLASSY | STARTP | BOTTOMP | ENDP | AYGP
BOL NO

XYZ 2009-06-08 50

XYZ 1 2009-06-09 60 A 60 35 45 458
XYZ 1 2009-06-10 49 B 60 35 45 45(8
XYZ 1 2009-06-11 40 B 60 35 45 45(8
XYZ 1 2009-06-12 35 B 60 35 45 458
XYZ 1 2009-06-15 45 C 60 35 45 45|8
XY 2 2009-06-16 45

XYZ 2 2009-06-17 45 A 45 43 70 51.4
XYZ 2 2009-06-18 43 B 45 43 70 514
XYZ 2 2009-06-19 47 C 45 43 70 514
XYZ 2 2009-06-22 52 Cc 45 43 70 51.4

©ISO/IEC 2016 — All rights reserved Row pattern recognition: FROM clause 21

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.10 ONE ROW PER MATCH vs. ALL ROWSPER MATCH

SYM MATCH [TRADEDAY | PRICE | CLASSY | STARTP | BOTTOMP | ENDP | AVGP
BOL NO
XYZ |2 2009-06-23 70 C 45 43 70 51.4
XYZ 2009-06-24 | 60

In the fample output, note the rows in which the row pattern measures are null. These rows correspond|to

unmatghed rows in the row pattern input table.

It is nqt possible for a pattern to permit empty matches and also have unmatched rows. The reason is th
row offthe row pattern input table cannot be mapped to a primary row pattern variable, thén-that row cg
be the ptarting row of an empty match, and will not be regarded as unmatched, assumingithat the pattern g
empty|matches. Thus, if a pattern permits empty matches, then the output using ALL\ROWS PER MA]
SHOW EMPTY MATCHES is the same as the output using ALL ROWS PER MAFEH WITH UNMAT
ROWS. Thus WITH UNMATCHED ROWS is primarily intended for use with patterns that do not perr
empty[matches. However, the user may prefer to specify WITH UNMATCHED ROWS if the user is un
wheth¢r a pattern may have empty matches or unmatched rows.

Note that if ALL ROWS PER MATCH WITH UNMATCHED ROWSis used with the default skipping
behavipr (AFTER MATCH SKIP PAST LAST ROW), then every row of the row pattern input table will
exactly once in the output (as the location of an empty match,as a’row that is mapped by a non-empty
or as ah unmatched row).

Other $kipping behaviors are permitted using WITH UNMATCHED ROWS, in which case it becomes p
for a rpw to be mapped by more than one match and appear in the row pattern output table multiple tin
Unmafched rows will appear in the output only oneg:

311 AFTER MATCH SKIP

The AFTER MATCH SKIP clause-determines the point to resume pattern matching after a non-empty
has begn found. The default for the clause is AFTER MATCH SKIP PAST LAST ROW. The options a
followp (RPV denotes a row-pattern variable):

AFTER MATCH SKIP TO NEXT ROW: resume pattern matching at the row after the first row of
cyrrent match.

AFTER MATCH SKIP PAST LAST ROW: resume pattern matching at the next row after the last
the currént'match.

at if a
n still
ermits
'CH
CHED
nit
certain

appear
match,

bssible
€s.

match
e as

the

row of

AFTER MATCH SKIP TO FIRST RPV: resume pattern matching at the first row that is mapped td

the

row pattern variable RPV.

AFTER MATCH SKIP TO LAST RPV: resume pattern matching at the last row that is mapped to the row

pattern variable RPV.
AFTER MATCH SKIP TO RPV: same as AFTER MATCH SKIP TO LAST RPV.

When using AFTER MATCH SKIP TO FIRST or AFTER MATCH SKIP TO [LAST], it is possible that no
row is mapped to the <row pattern variable name>. For example, the row pattern variable A in

22 Row Pattern Recognition in SQL

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)

3.11 AFTER MATCH

AFTER MATCH SKIP TO A
PATTERN (X A* X),

SKIP

might have no rows mapped to A. If there is no row mapped to A, then there is no row to skip to, so a run-time

exception is generated.

Another aberrant condition is that AFTER MATCH SKIP may try to resume pattern matching at the same row

that thetastmatctrstarted. Forexampte;

AFTER|MATCH SKIP TO X
PATTERN (X Y+ Z),

In this|example, AFTER MATCH SKIP TO X tries to resume pattern matching at the samerow where the

previopis match was found. This would result in an infinite loop; consequently a run-time€xception is ger|
for thig scenario.

erated

Note that the AFTER MATCH SKIP syntax only determines the point to resumeé scanning for a match pfter a
non-empty match. When an empty match is found, one row is skipped (as if SKIP TO NEXT ROW had been

specified). Thus an empty match never causes one of these exceptions.

A quely that gets one of these exceptions should be rewritten. For example,

AFTER|MATCH SKIP TO A
PATTERN (X (A | B) Y)

will cause a run-time error if alternative A does not matchdnstead of this example, perhaps the followipg will

serve the uesr’s needs:

AFTER|MATCH SKIP TO C
PATTERN (X (A | B) Y)
SUBSET C = (A, B)

In the fevised example, no run-time erroris possible, whether A or B is matched.

As angther example:

AFTER|MATCH SKIP TO FIRST A
PATTERN (A* X)

This example will always-get an exception after the first match, either for skipping to the first row of the
(if A* matches) or for.skipping to a non-existent row (if A* does not match). In this example, SKIP TO
ROW might be adetter choice.

When psing ALE ROWS PER MATCH together with skip options other than AFTER MATCH SKIP H
LAST|ROW it is possible for consecutive matches to overlap, in which case a row R of the row patterr
table nhight’occur in more than one match. In that case, the row pattern output table will have one row f

match
NEXT

AST
input
r each

match in which R participates. The MATCH_NUMBER function may be used to distinguish between t
multiple matches in which a row of the row pattern input table participates. When a row participates in
than one match, its classifier may be different in each match as well.

e
more

©ISO/IEC 2016 — All rights reserved Row pattern recognition: FROM clause 23

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.12 PATTERN

3.12 PATTERN

The PATTERN clause is used to specify a regular expression. The regular expression is enclosed in parentheses.
It is built from primary row pattern variables, and may use the following operators:

— concatenation: indicated by the absence of any operator sign between two successive items in a pattern.
Note that whitespace is required to delimit two successive primary row pattern variables.

— Quantifiers: quantifiers are postfix operators with the following choices:
* — 0 or more iterations

+— 1 or more iterations

? — 0 or 1 iterations

{ n} — exactly niterations (n > 0)

{ n, } — nor more iterations (n = 0)

{ n, m} — between n and m (inclusive) iterations (0 < n < m, 0~<m)
{, m} — between 0 and m (inclusive) iterations (m > 0)

reluctant quantifiers, indicated by an additional question’mark (*?, +?, ??, {n}?, {n,}?, { n, m}?, {,m}?).
See below for the difference between reluctant and non-reluctant quantifiers.
— alfernation: indicated by a vertical bar (|). Alternatives are preferred in the order in which they are specified.
— gnpuping: indicated by parentheses.

— PERMUTE: see Subclause 3.12.1, “PERMUTE”.

— eXclusion: parts of the pattern to be excluded from the output of ALL ROWS PER MATCH are englosed
bgtween {- and -}. See Subclause*3.12.2, “Excluding portions of the pattern”.

— arichors (not permitted with-row pattern matching in windows):
A matches the begining of a row pattern partition

$: matches the end-of a row pattern partition

— (): empty pattern, matches an empty set of rows

The differenee between non-reluctant (or “greedy”) and reluctant quantifiers appended to a single row pattern
variable is illustrated as follows: A* tries to map as many rows as possible to A (consistent with mapping the
entire ;‘Jattern), whereas A*? tries to map as few rows as possible to A (consistent with mapping the entire pattern).
The semantics of quantifiers on complex regular expressions, such as (A | B)*, cannot be expressed succinctly;
see Subclause 6.2.3, “Quantification”,

The precedence of the operators in a regular expression, in decreasing order, is as follows:

— primaries: primary row pattern variables, anchors, PERMUTE, parenthetic expressions, exclusion syntax,
empty pattern

— quantifier; a primary may have zero or one quantifier

24 Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.12 PATTERN

— concatenation
— alternation

Precedence of alternation is illustrated by this example:

PATTERN (A B | C D)

which segtivatentto

PATTERN ((A B) | (C D))

and is pot equivalent to

PATTERN (A (B | C) D)

Precedence of quantifiers is illustrated by this example:

PATTERN (A B *)
whichl|is equivalent to
PATTERN (A (B*))
and is pot equivalent to

PATTERN ((A B)*)

A quantifier may not immediately follow another quantifier. For example

PATTERN (A**)

is prohibited, whereas

PATTERN ((A*)*)

is permitted (though the latter pattefn is no more powerful than just A*).

It is pgrmitted for a primary row pattern variable to occur more than once in a pattern. For example

PATTERN (X Y X)

3.12.1 PERMUTE

The PERMUTE syntax may be used to express a pattern that is a permutation of simpler patterns. For example,

PATTERN (PERMUTE (A, B, C))

is equivalent to an alternation of all permutations of three row pattern variables A, B and C, like this:

PATTERN (ABC | ACB | BAC|BCA|JCAB]CBA)

Note that PERMUTE is expanded lexicographically. (In this example, since the three row pattern variables A,
B, and C are listed in alphabetic order, it follows from lexicographic expansion that the expanded possibilities
are also listed in alphabetic order.) This is significant because alternatives are attempted in the order written in

©ISO/IEC 2016 — All rights reserved Row pattern recognition: FROM clause 25

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.12 PATTERN

the expansion. Thus a match to (A B C) will be attempted before a match to (A C B), etc.; the first attempt that
succeeds is the “winner”.

As another example:

PATTERN (PERMUTE (X{3}, B C?, D))

is equivalent to

PATTERN ({3}
{3} DB C?)
4

3.12.4 Excluding portions of the pattern

When psing ALL ROWS PER MATCH with either the OMIT EMPTY.MATCHES or SHOW EMPTY]
MAT{HES suboptions, rows matching a portion of the PATTERN may be excluded from the row pattgrn
outputtable. The excluded portion is bracketed between {- and <}"in the PATTERN clause.

For example, the following example finds the longest periods of increasing prices that start with a price ho less
than 10.

SELECT M.Symbol, /* row’s symbol */
M.Tradeday, /* row’s trade day */

M.Price, /* row’s price */
M.Avgp, /* average price >/
M.Matchno /* row’s match_number */

FROM Ticker
MATCH_RECOGNIZE (
PARTITION BY Symbol
ORDER BY Tradeday,
MEASURES FINAL AVG (S.Price) AS Avgp,
MATCH_NUMBER@.\AS Matchno
ALL ROWS PER MATCH
AFTER MATCH)SKIP TO LAST B
PATTERN..G{- A -} B+ {- C -})

SUBSETAS = (A, B)

DEEINE A AS A.Price >= 10
B AS B.Price > PREV (B.Price),
C AS C.Price <= PREV (C.Price)

IVAS M;

The row pattern output table will only have rows that are mapped to B; the rows mapped to A and C will be
excluded from the output.

Although the excluded rows do not appear in the row pattern output table, they are not excluded from the defi-
nitions of union row pattern variables, nor from the calculation of scalar expressions in the DEFINE or MEA-
SURES. For example, see the definitions of the primary row pattern variables A and C, the definition of union
row pattern variable S, or the Avgp row pattern measure in the example above.

26 Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.12 PATTERN

Also, excluded rows do not alter the behavior of AFTER MATCH SKIP. That is, excluded rows are still used
in deciding where to resume looking for the next match. For example, in the example above, suppose the AFTER
MATCH SKIP clause were changed to

AFTER MATCH SKIP PAST LAST ROW

while leaving the pattern the same:

PATTERN ({- A -} B+ {- C -})

In that|case, a match to the pattern must map a row to the row pattern variable C, and the skip will.be to the
next rqw after the last row of the match; that is, after the row that is mapped to C, even though-the row fthat is
mapped to C is excluded from the output.

The exclusion syntax is not permitted with ALL ROWS PER MATCH WITH UNMATEHED ROWS.

The eXclusion syntax is permitted with ONE ROW PER MATCH, though it has no-effect since in this gase
there i$ only a single summary row per match.

3.13| SUBSET

The SUBSET clause is optional. It is used to declare union ro pattern variables. For example:

FROM Ticker
MATEH_RECOGNIZE
(|ORDER BY Tradeday
MEASURES FIRST (X.time) AS x_firsttine,
LAST (Y.time) AS y_lasttime,
AVG (S.Price) AS xy_avgprice
PATTERN (X+ Y+)
SUBSET S = (X, Y)
DEFINE X AS X.Price > PREV (X.Price),
Y AS Y.Price <.PREV (Y.Price)

))

This example declares a union row pattern variable, S, and defines it as the union of the rows mapped to| X and
the rows mapped to Y. Seée Subclause 3.8, “Row pattern variables”, for an example of how such unions|are
formed.

There pan be multiple union row pattern variables. For example:

PATTERN (WFX+ Y+ Z+)
SUBSET &.=/(X, Y),
B= (W, 2)

The right hand side of a SUBSET item is a parenthesized, comma-separated list of distinct primary row pattern
variables. This defines the union row pattern variable (on the left hand side) as the union of the primary row
pattern variables (on the right hand side).

Note that the list of row pattern variables on the right hand side cannot include any union row pattern variables
(there are no unions of unions).

©ISO/IEC 2016 — All rights reserved Row pattern recognition: FROM clause 27

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.14 DEFINE

3.14 DEFINE

DEFINE is a mandatory clause, used to specify the Boolean condition that defines a primary row pattern variable.
In the example,

DEFINE X AS X_.Price > PREV (X.Price),

X is défined by the condition X.Price > PREV (X.Price), and Y is defined by the condition Y.Price < 'PH
(Y.Prige). (PREV is a row pattern navigation operation which evaluates an expression in the previous rq
Subclguse 4.5, “Row pattern navigation operations”, regarding the complete set of row pattern-navigati
operat{ons.)

A primary row pattern variable does not require a definition; if there is no definition, the.default is a pre
that is plways true. Any row can be mapped to such a primary row pattern variable.

A unign row pattern variable cannot be defined by DEFINE, but may appear in“the Boolean condition ¢
primary row pattern variable.

The Bgolean condition of a primary row pattern variable RPV may reference RPV, or other primary or
row pdgttern variables. For example:

FROM Ticker
MATECH_RECOGNIZE

In this|example:

Y AS Y.Price < PREV (Y.Price)

(|PARTITION BY Symbol
ORDER BY Tradeday
MEASURES FIRST (A.Tradeday) AS A_Firstday,
LAST (D.Tradeday) AS D_Lastday,
AVG (B.Price) AS B_Avgprice,
AVG (D.Price) AS D_Avgprice
PATTERN (A B+ C+ D)
SUBSET BC = (B, C)
DEFINE A AS Price > 100,
B AS B.Price > A:Rrice,
C AS C.Price <<AVG (B.Price),
D AS D.Price > MAX (BC.Price)
)[AS M

cdlumn reference Price).

REV
W, see

dicate

fa

union

The definition ofA implicitly references the universal row pattern variable (because of the unqualified

Tle definition of B references the primary row pattern variable A.

Tipe definition of C references the primary row pattern variable B.

The definition of D references the union row pattern variable BC.

The Boolean conditions are evaluated on successive rows of a row pattern partition in a trial match, with the
current row being tentatively mapped to a primary row pattern variable PRPV as permitted by the pattern. To
be successfully mapped to PRPV, the Boolean condition that defines PRPV must evaluate to True.

In the preceding example:

28 Row Pattern Recognition in SQL

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.14 DEFINE

A AS Price > 100

Here Price is an unqualified column reference, so it is implicitly qualified by the universal row pattern variable.
All rows that are already mapped, including the current row, are mapped to the universal row pattern variable.
Also, Price is an ordinary row pattern column reference, so it is evaluated in the last row mapped to the

universal row pattern variable, i.e., the current row. Thus this condition is equivalent to A AS A.Price > 100.

B A

Her
Big
may

CA

Her
isc
may

DA

Thi
Bod

The se
and DI

3.15

The re
patterr

— If
th
cq
m

— |If

Pg
th

5 B.Price > A.Price

b B.Price and A.Price are ordinary row pattern column references. B.Price refers to the current row
being defined), whereas A.Price refers to the last row mapped to A. In view of the pattetn, the on
ped to A is the first row to be mapped.

5 C.Price < AVG (B-.Price)

e C.Price refers to the Price in the current row, since C is being defined. The aggregate AVG (B.f
pmputed as the average of all rows that are already mapped to B (but net to any rows that might
ped to B later).

5 D.Price > MAX (BC.Price)

example is similar to the preceding, though it illustrates the use of a union row pattern variable
lean condition.

mantics of Boolean conditions are discussed in.more detail in Clause 4, “Expressions in MEASL
FFINE”.

Therow pattern output table

sult of MATCH_RECOGNIZE 'is called the row pattern output table. The shape (row type) of th
output table depends on'the choice of ONE ROW PER MATCH or ALL ROWS PER MATCH:

ONE ROW PER MATCH is specified or implied, then the columns of the row pattern output tal
P row pattern partitioning columns in their order of declaration, followed by the row pattern mea
lumns in theirorder of declaration. Since a table must have at least one column, this implies tha
List be at least'one row pattern partitioning column or one row pattern measure column.

ALL ROWS PER MATCH is specified, then the columns of the row pattern output table are the
ttern partitioning columns in their order of declaration, the ordering columns in their order of decl3
bfeW pattern measure columns in their order of declaration, and finally any remaining columns

(since
ly row

Price)

in the

URES

e row

le are
sure
there

row
ration,
f the

ro

patterimput tate, i the order they occur i the Tow pattermimput tabte.

The order of columns in the row pattern output table is only significant when using SELECT *. The order of
columns is designed to facilitate comparing the output when the query is toggled between ONE ROW PER
MATCH and ALL ROWS PER MATCH.

The names and declared types of the row pattern measure columns are determined by the MEASURES clause.
The names and declared types of the non-measure columns are inherited from the corresponding columns of
the row pattern input table.

©ISO/IEC 2016 — All rights reserved

Row pattern recognition: FROM clause 29

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.15 Therow pattern output table

3.15.1 Row pattern output name

Optionally, a correlation name may be assigned to the row pattern output table, like this:

SELECT T.Matchno
FROM Ticker

MATCH_RECOGNIZE (...

In the
AS is

The be
names

to resglve ambiguous column names if there are other tables in the FROM clause.“For example, suppos

Match
above.

SELEC
FROM 1

WHERE] . - .

3.15.2

Optior
row pa

the columns of the row pattern gutput table. There must be the same number of column names in the li

there al
with th

For ex
colum

SELEC

MEASURES MATCUH_NUMBER () AS Matchno

) AS T
breceding example, M is the correlation name assigned to the row pattern output table.“The noise
pptional.

nefit to assigning a correlation name is that the correlation name may be used, to’qualify the colu
of the row pattern output table, as in M.Matchno in the preceding example,This is especially im

maker is a table with a column named Matchno, to be joined with the row pattern recognition sh
In that case the query might be written:

[T. Matchno, M.Matchno
[icker
MATCH_RECOGNIZE (...
MEASURES MATCH_NUMBER () AS Matchno

) AS T, Matchmaker AS M

Row pattern output declared cabumn list

ally, the row pattern output name-may be followed by a parenthesized list of column names, call
ttern output declared columndijst. The row pattern output declared column list may be used to re

Fe columns in the row pattern output table. The column names in the list are in one-to-one correspo
e columns of the roywpattern output table.

bmple, the followirlg is a modification of the example in Subclause 3.4.2, “The row pattern input de

word

mn

bortant
e
DWwn

ed the
hame

t as
ndence

clared

N list™:

[M.Cym, /* ticker symbol */
M.NMnho, /* sequential match number */
N<zStartprice, /* starting price */
M _BRottomprice, /* bottom price */
M.Endprice, /* ending price */
M.Avgprice /* average price */

FROM Ticker AS T (Sym, Td, Pr)

30 Row Pattern Recognition in SQL

MATCH_RECOGNIZE (
PARTITION BY T.Sym
ORDER BY T.Td
MEASURES MATCH_NUMBER() AS Matchno,
A_Pr AS Startp,
LAST (B.Pr) AS Bottomp,
LAST (C.Pr) AS Endp,

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.15 Therow pattern output table

AVG (U.Pr) AS Avgp
ONE ROW PER MATCH
AFTER MATCH SKIP PAST LAST ROW
PATTERN (A B+ C+)
SUBSET U = (A, B, C)
DEFINE /* A defaults to True, matches any row */
B AS B.Pr < PREV (B.Pr),
C AS C.Pr > PREV (C.Pr)
) AS M (Cym, Mno, Startprice, Bottomprice, Endprice, AvVgprice)

The preceding example uses ONE ROW PER MATCH, so the columns of the row pattern outputcable pre the
row pattern partitioning column Sym, followed by the row pattern measure columns Matchno, Startp, Bgttomp,
Endp, pnd Avgp, for a total of six columns. The row pattern output declared column list renames'these columns
to Cym, Mno, Startprice, Bottomprice, Endprice, and Avgprice, respectively. Note that the SELECT ligt must
use thg column names of the row pattern output declared column list, since those are the-final names ofl the

columps.

In all, the preceding example has the originally defined column names and their‘renames as shown in the fol-
lowing table:

Table 10 — Original and renamed column names

row pattern input table row pattern output table
original column | renamed column | original column | renamed column
name name name name
Symbol Sym Sym Cym
Tradeday Td
Price Pr
Matchno Mno
Startp Startprice
Bottomp Bottomprice
Endp Endprice
Avgp Avgprice

3.16 Prohibited nesting

The following kinds of nesting are prohibited by [1SO9075-2]:
1) Nesting one row pattern recognition within another is prohibited.

2) Outer references in MEASURES or DEFINE are prohibited. This means that a row pattern recognition
cannot reference any table in an outer query block except the row pattern input table. (The row pattern

©ISO/IEC 2016 — All rights reserved Row pattern recognition: FROM clause 31

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.16 Prohibited nesting

3)
4)

input table is referenced using row pattern variables, not range variables defined outside the
MATCH_RECOGNIZE.)

Subqueries in MEASURES or DEFINE cannot reference row pattern variables.

Row pattern recognition cannot be used in recursive queries.

These restrictions are illustrated in the following Subclauses.

3.16.1 Row pattern recognition nested within another row pattern recognition

Nesting one row pattern recognition within another is prohibited. For example, the following is a syntay

SELECT ...
FROM Ticker

A posdible workaround is to relegate the nested row pattern recognition to a view or SQL-invoked fung

3.16.4 Outer referenceswithin a row patter recognition query

SELECT (SELECT M.Avg_Price

FROM Toast AS.T

In this|example, T is both the range variable for Toast in the outer query, and also a row pattern variablg
scalar pubduery.

Here ig an example of row pattern recognition-nested within an outer query. Note the underlined range va

MATCH_RECOGNIZE (

DEFINE A AS EXISTS (SELECT *
FROM Stock2
MATCH_RECOGNIZE (...))
)

FROM Ticker
MATCH_RECOGNIZE (
ORDER\ BY. Tradeday
MEASURES AVG (T.Price) AS Avg_Price
PATIERN (T+)
DEFINE T AS T.Price >= AVG (T.Price)
) AS M

)

error:

tion.

riables

in the

SQL uses static scoping rules. This means that a range variable declared in an inner scope occludes a range
variable of the same name declared in an outer scope. In the preceding example, there are two range variables
named T. The row pattern variable T is declared in the PATTERN clause and visible in the DEFINE and
MEASURES clauses, occluding the range variable T of the outer query block. Therefore, the scalar subquery
(the row pattern recognition query) is not correlated with the outer query, the overall result will have one row
for each row of Toast, and all rows will be identical.

32 Row Pattern Recognition in SQL

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)

3.16 Prohibited

nesting

This example is permitted because there are no outer references in the MATCH_RECOGNIZE. However, while
legal, having multiple range variables with the same name can be confusing, so this example might be better
written by changing one of the range variables. For example, changing the row pattern variable from T to X

givest

he equivalent query:

SELECT (SELECT M.Avg_Price

FROM Ticker

FROM 1

On the

SELEC

FROM 1

In the

variable T defined in the outer block; therefore, this example is a syntax error.

It may
routing

3.16.3

A subd
not pe
outer @

SELEC
FROM 1

MATF‘I-I_DE{‘(\PI\I 1 ZE (
ORDER BY Tradeday
MEASURES AVG (X.Price) AS Avg_Price
PATTERN (X+)
DEFINE X AS X.Price >= AVG (X.Price)
) AS M

)
foast AS T

other hand, the following is a syntax error:

[(SELECT M_Avg_Price
FROM Ticker
MATCH_RECOGNIZE (
ORDER BY Tradeday
MEASURES AVG (X.Price) AS Avg_Price
PATTERN (X+)
DEFINE X AS T.Price >= AVG (X.Prite)
) AS M

)
foast AS T

preceding example, the column reference T:Price in the DEFINE clause is an outer reference to the

be possible to work around this limitation by placing the row pattern recognition in an SQL-inv
, passing as arguments the valuesithat are prohibited as outer references.

Conventional query.nested within row pattern recognition query

uery can be nested in an expression in MEASURES or DEFINE. Subqueries are permitted if the
form row pattern recognition themselves, and if they do not reference the row pattern variables
uery. Herg\is-an example of the latter (note underlined A):

[Firstday
[1Cker

©ISO/IE

b range

bked

y do
f the

| MATCH RECOGNIZE (

ORDER BY Tradeday
MEASURES A.Tradeday AS Firstday
PATTERN (A B+)
DEFINE A AS A_.Price > 100,
B AS B.Price <
(SELECT AVG (S.Price)
FROM Ticker S
WHERE S.Tradeday BETWEEN
A.Tradeday - INTERVAL "1" YEAR

C 2016 — All rights reserved Row pattern recognition: FROM clause 33

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
3.16 Prohibited nesting

AND A.Tradeday)
)

In this example, the definition of B involves a subquery that is correlated with the row pattern variable A (note
underlining). This is a syntax error, since subqueries of row pattern matching cannot reference row pattern
variables.

It may be possible to work around this limitation by placing the correlated subquery in an SQL-invoked routine,
passingas arguments the values that are pronibited as OUter references.

3.16.4 Recursion

Row pattern matching is prohibited in recursive queries. For example, the following,is-a Syntax error:

CREATE RECURSIVE VIEW Problem (Kolo, Xoro) AS
SELECT Kolo, Xoro
FROM T
NION
SELECT Kolo + 1, Xoro
FROM Problem
MATCH_RECOGNIZE (
ORDER BY Kolo
MEASURES MATCH_NUMBER () AS Xoro
ALL ROWS PER MATCH
PATTERN (A+)
DEFINE A AS A_Xoro > PREV (A.Xoro)

3.16.5 Concatenated row pattern recognition

Note that it is not prohibited to feed:the output of one row pattern recognition into the input of another,|as in
this example:

SELECT ...
FROM (SELECT =
FROM Ticker

MATCH_RECOGNIZE (...))
MATCH_RECOGNIZE (...)

In this|example, the first MATCH_RECOGNIZE is in a derived table, which then provides the input to|the
second MATCH_RECOGNIZE.

34 Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

4

ISO/IEC TR 19075-5:2016(E)
4.1 Row pattern column references

Expressonsin MEASURES and DEFINE

Scalar expression syntax as defined in [ISO9075-2] is available in row pattern matching. This provides
familigr capabilities as arithmetic and aggregates. Note though that scalar expressions have special Sen]
in MEASURES and DEFINE; this is the subject of this Subclause.

such

In addjtion, [1ISO9075-2] provides the following scalar expressions that are unique to row pattern matc

Tine COUNT aggregate has special syntax and semantics to count rows that are mapped to a row p
vgriable by the current row pattern match.

Row pattern navigation operations, using the functions PREV, NEXT, FIRST-and LAST. Row pa
ngvigation operations are discussed in Subclause 4.5, “Row pattern navigation operations”.

Tihe MATCH_NUMBER function, which returns the sequential numket.of a row pattern match wi
row pattern partition, discussed in Subclause 4.7, “MATCH_NUMBER function”.

The CLASSIFIER function, which returns the name of the primary row pattern variable to which 4
mppped, discussed in Subclause 4.8, “CLASSIFIER function”.

Expregsions in MEASURES and DEFINE clauses have the;same syntax and semantics, with the follow
exceptjons:

1)

2)

4.1

DEFINE clause only supports running semantics; MEASURES defaults to running semantics, but

InfDEFINE, the CLASSIFIER function dgoes not return the classifier of rows after the current row, w
infMEASURES, the CLASSIFIER function does return the classifier of rows after the current row.
isfonly an issue when CLASSIFIER unction is nested within the NEXT row pattern navigation ope
sep Subclause 4.8, “CLASSIFIER-function™.)

Row pattern-column references

A column referencésis'a column name qualified by an explicit or implicit range variable, such as

A.Prig¢e

supports final semantics. This distinction is discussed in Subclause 4.2, “Running vs. final semantics”.

antics

ning:

attern

ttern

thin its

row is

ng

also

hereas
(This
ration;

A columa.name with no qualifier, such as Price, is implicitly qualified by the universal row pattern vari
which leeferences the set of all rows in a match

able,

Column references may in general be nested within other syntactic elements, notably aggregates and subqueries.
(However, nesting in row pattern matching is subject to limitations described in Subclause 3.16, “Prohibited
nesting”, for the FROM clause and Subclause 5.16, “Prohibited nesting”, for the WINDOW clause.)

A column reference that is qualified by an explicit or implicit row pattern variable is called a row pattern column
reference. Row pattern column references are classified as follows:

©ISO/IEC 2016 — All rights reserved

Nested within an aggregate, such as SUM: aggregated row pattern column reference.

Expressionsin MEASURES and DEFINE 35

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
4.1 Row pattern column references

— Nested within a row pattern navigation operation (PREV, NEXT, FIRST, and LAST): a navigated row
pattern column reference.
— Otherwise: an ordinary row pattern column reference.

All row pattern column references in an aggregate or row pattern navigation operation must be qualified by the
same row pattern variable. For example

PATTERN (A+ B+)
DEFINE B AS AVG (A.Price + B.Tax) > 1000

The preceding example is a syntax error, because A and B are two different row pattern variables-Aggregate
semantics require a single set of rows; there is no way to form a single set of rows on which.to,evaluate A.Price
+ B.Tgx. On the other hand, this is acceptable:

DEFINE B AS AVG (B.Price + B.Tax) > 1000
In the preceding example, all row pattern column references in the aggregate are.qualified by B.

An unqualified column reference is implicitly qualified by the universal row,pattern variable, which refgrences
the set|of all rows in a match. For example

DEFINE B AS AVG (Price + B.Tax) > 1000

The preceding example is a syntax error, because the unqualifiéd column reference Price is implicitly qualified
by the [universal row pattern variable, whereas B.Tax is explicitly qualified by B. On the other hand, this is
acceptpble:

DEFINE B AS AVG (Price + Tax) > 1000

In the preceding example, both Price and Tax are implicitly qualified by the universal row pattern variabple.

4.2 | Runningvs. final semantics

Patterr) matching in a sequence of rows is usually envisioned as an incremental process, with one row gfter
another examined to see if<tfits the pattern. With this incremental processing model, at any step until the
complegte pattern has been_recognized, there is only a partial match and it is not known what rows might be
added jin the future, nor-what variables those future rows might be mapped to. Therefore, in [ISO9075-2], a
row pgttern columnteference in the Boolean condition of a DEFINE clause has “running” semantics. This
means|that a royw\pattern variable represents the set of rows that have already been mapped to the row pattern
variable, up te-and including the current row, but not any future rows.

After the\complete match has been established, it is possible to talk about “final” semantics. Final semantics
iSthe e semantics o T 13 v S a T, inat-se antics1s© a .Ein
MEASURES, since in DEFINE there is uncertainty about whether a complete match has been achieved.

The keywords RUNNING and FINAL are used to indicate running or final semantics, respectively; the rules

for these keywords are discussed in Subclause 4.3, “RUNNING vs. FINAL keywords”.

The fundamental rule for expression evaluation in MEASURES and DEFINE is as follows:

36 Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
4.2 Running vs. final semantics

1) When an expression involving a row pattern variable RPV is computed on a group of rows, then the set of

rows SRthat is mapped to RPV is used. If SRis empty, then COUNT is 0 and any other expression

involving RPV is null.

2) When an expression requires evaluation in a single row, then the latest row of SRis used. If SR is empty,
then the expression is null.

For example:

SELEC
FROM 1

Consig

[M.Symbol, M.Tradeday, M.Price, M.RunningAvg, M.FinalAvg
[1CKER
MATCH_RECOGNIZE (
PARTITION BY Symbol
ORDER BY Tradeday
MEASURES RUNNING AVG (A.Price) AS RunningAvg,
FINAL AVG (A.Price) AS FinalAvg
ALL ROWS PER MATCH
PATTERN (A+)
DEFINE A AS A.Price >= AVG (A.Price)
) AS M

er the following ordered row pattern partition of data:

Table 11 — Ordered row pattern partition of data

Row SYMBOL TRADEDAY PRICE
Ry XYZ 2009-06-09 10

Ry XYZ 2009-06-10 16

Rs XYZ 2009-06-11 13

R4 X¥YZ 2009-06-12 9

The following logic can be.used to find a match:

1) 0
Pda
Al
0

N the first row of the'row pattern partition, tentatively map row R = Ry to row pattern variable A.
int SR = { Ry} To confirm whether this mapping is successful, evaluate the predicate

Price >=/AVG (A.Price)

N the'left hand side, A.Price must be evaluated in a single row, which is the last row of SRusing r

At this

Inning

S

antics. The last row of SR is Ry; therefore A.Price is 10

On the right hand side, AVG (A.Price) is an aggregate, which is computed using the rows of SR. This
average is 10/1 = 10.

Thus the predicate asks if 10 = 10. The answer is yes, so the mapping is successful. However, the pattern
A+ is “greedy”, so the engine must try to match more rows if possible.

©ISO/IEC 2016 — All rights reserved

Expressionsin MEASURES and DEFINE 37

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
4.2 Running vs. final semantics

2) On the second row of the row pattern partition, tentatively map R = R, to row pattern variable A. At this

3)

4)

Ry did[not satisfy the definition of A, so the longest match to A+ is { Ry, Ry, Rz }. Since A+ has a greeq
quantifier, this is the-preferred match.

The averages.computed in the DEFINE are always running averages. In MEASURES, especially with
ROWS PER MATCH, it is possible to distinguish final and running aggregates. Notice the use of the key
RUNNING-and FINAL in the MEASURES clause. The distinction can be observed in the result of the ex

38 Row Pattern Recognition in SQL

On the right hand side, AVG (A.Price) is an aggregate, which is computed using the rows of SR T
average is (10+16)/2 = 13.

Thus the predicate asks if 16 = 13. The answer is yes, so the mapping is successful.

Op the third row of the row pattern partition, tentatively map R = R3 to row pattefavariable A. Nov
arg three rows mapped to A, so SR={ Ry, Ry, Rz }. Confirm whether the mapping is successful by
at|ng the predicate

AJPrice >= AVG (A.Price)

average is (10+16+13)/3 = 13.

Tlpus the predicate asks if 13 = 13. The answer is yes, so the mapping is successful.

AJPrice >= AVG (A.Price)

A_Price >= AVG (A.Price)

Op the left hand side, A.Price is evaluated in Rg; therefore A.Priceis 13.

Op the right hand side, AVG (A.Price) is an aggregate, which’is computed using the rows of SR. T

Op the fourth row of the row pattern partition, tentatively map R = R4 to row pattern variable A. Al
pgint SR= { Ry, Ry, Rz, Ry }. Confirm whetherthe mapping is successful by evaluating the predic

Op the left hand side, A.Price is evaluated in Ry; therefore A.Price is 9.

Op the right hand side, AVG-(A:Price) is an aggregate, which is computed using the rows of SR. T
average is (10+16+13+9)/4'=/12.

Thus the predicate asks:if 9 = 12. The answer is no, so the mapping is not successful.

point there are two rows mapped to A, so SR={ Ry, R, }. Confirm whether the mapping is successful by
evaluating the predicate

On the left hand side, A.Price must be evaluated in a single row, which is the last row of SRusing running

i Tk 1 + £ D D +la £ A_Des H 146
semant ST MeTasStowoTo1S r\2, UICTITIUIT A.TTTICT 15 LU,

nis

v there
evalu-

Nis

this
nte

Nis

y

ALL
rwords

ample:

Table 12— RUNNING and FINAL in MEASURES

SYMBOL TRADEDAY PRICE RUNNINGAVG FINALAVG
XYZ 2009-06-09 10 10 13
XYZ 2009-06-10 16 13 13

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
4.2 Running vs. final semantics

SYMBOL TRADEDAY PRICE RUNNINGAVG FINALAVG

XYZ 2009-06-11 13 13 13

It is possible that the set of rows SR mapped to a row pattern variable RPV is empty. When evaluating over an

empty

set:

1) C
2) A

For ex

PATTERN (A? B+)

DEFIN

With t

A mat

1) Td
to
pr

Al

is

2) Since the mapping to A failed, the empty match is taken as matching A?.

3) T4

DUNT is 0.
Ny other aggregate, row pattern navigation operation, or ordinary row pattern column reférence i
hmple:

F A AS A.Price > 100,
B AS B_.Price > COUNT (A.*) * 50

ne preceding example, consider the following ordered row pattern partition of data :

Table 13 — Ordered row pattern partjtion of data

Row | PRICE
R 60
R, 70
Ry 40

th can be found in this data as follews:

ntatively map R = Ry to row pattern variable A. (The quantifier ? means to try first for a single n

edicate

Price > 100

evaluated. A:Price is 60; therefore the predicate is false and the mapping to A does not succeed.

ntatively map R= R; to B. The predicate to check for this mapping is

5 null.

atch

A,; if that fails, then an empty match is taken as matching A?). To see if the mapping is successful, the

B.

Price > COUNT (A.*) * 50

No rows are mapped to A, therefore COUNT (A.*) is 0. Since B.Price = 60 is greater than 0, the mapping

is

successful.

4) Similarly, rows Ry and R3 can be successfully mapped to B. Since there are no more rows, this is the
complete match: no rows mapped A, { Ry, Ry, R } mapped to B.

A row pattern variable can make a forward reference; that is, a reference to a row pattern variable that has not
been matched yet. For example,

©ISO/IEC 2016 — All rights reserved

Expressionsin MEASURES and DEFINE 39

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
4.2 Running vs. final semantics

PATTERN (X+ Y+)
DEFINE X AS COUNT (Y.*) > 3,

Y AS Y.Price > 10

is legal syntax. However, this example will never be matched since, at the time that a row is mapped to X, no
row has yet been mapped to Y. Thus, COUNT (Y.*) is 0 and can never be greater than 3. This is true even if

there a

re four future rows that might be successfully mapped to Y. Consider this data set:

Mappi
define

Howe
one ro

4.3
RUNN
and FI
Aggre

1) In
a

2) In

Table 14 — Ordered row pattern partition of data

Row PRICE
Ry 2

R 11

Rs 12

Ry 13

Rs 14

g { Ry, R, R4, R5 } to Y would be successful, since all four of these rows satisfy the Boolean co
forY. In that case, one might think that one could map R; to X and have a complete successful

er, the rules of [ISO9075-2] will not find thisématch, because, according to the pattern X+ Y+, a
v must be mapped to X before any rows are' mapped to Y.

RUNNING vs. FINAL_keywords

ING and FINAL are keywords used to indicate whether running or final semantics are desired. RUN
NAL are available far.tse with aggregates and the row pattern navigation operations FIRST and

jates, FIRST, and [ZAST can occur in the following places in a row pattern matching query:

the DEFINE ¢lause. When processing the DEFINE clause, the engine is still in the midst of recog
match; thierefore, the only supported semantics is running.

the MEASURES clause. When processing the MEASURES clause, the engine has finished recog

ndition
match.
least

NING
| AST.

nizing

nizing

a

match; therefore, it becomes possible to consider final semantics. There are two subcases:

a)

b)

Based

40 Row Pattern Recognition in SQL

If ONE ROW PER MATCH is specified, or if row pattern matching is done in a window, then

the

engine is conceptually positioned on the last row of the match, and there is no real difference between

running vs. final semantics.

If ALL ROWS PER MATCH is specified, then the row pattern output table will have one row

for

each row of the match. In this circumstance, the user may wish to see both running and final values,

so [1SO9075-2] provides the RUNNING and FINAL keywords to support that distinction.
on this analysis, [ISO9075-2] specifies the following:

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

1)

2)
3)
4)

5)

4.4

Aggregates (COUNT, SUM, AVG, etc.) may be used in both the MEASURES and DEFINE clauses. W
used in row pattern matching, aggregates operate on a set of rows thatare mapped to a particular row p
variable, using either running or final semantics. For example:

MEASURES SUM (A.Price) AS RunningSumOverA,

ALL

In this|example, A is a row pattern variable. The first row pattern measure, RunningSumOverA, does n
specify either RUNNING or FINAL, so it defaults to RUNNING. This means that it is computed as thg
of Prige in those rows that are mapped to A By the current match, up to and including the current row. 1
second row pattern measure, FinalSumQOverA, computes the sum of Price over all rows that are mapped to A
by the fcurrent match, including rows that-may be later than the current row. Final aggregates are only ayj

in MEASURES, not in DEFINE.

An unfualified column reference-contained in an aggregate is implicitly qualified by the universal row
variab

SUM

compuytes the running sum of Price over all rows of the current row pattern match.

All column references contained in an aggregate must be qualified by the same row pattern variable. Fg
examplle:

SUM

ISO/IEC TR 19075-5:2016(E)
4.3 RUNNING vs. FINAL keywords

In MEASURES, the keywords RUNNING and FINAL may be used to indicate the desired semant

ics for

an aggregate, FIRST, or LAST. The keyword is written before the operator, for example, RUNNING COUNT

(A.*) or FINAL SUM (B.Price).
In both MEASURES and DEFINE, the default is RUNNING.
In DEFINE, FINAL is not permitted; RUNNING may be used for added clarity if desired.

T dll aggregates, FIRST, ana LA
cqmputed after the last row of the match has been recognized, so that the default RUNNING sema
agtually no different from FINAL semantics. The user may prefer to think of expressions defaultin
FINAL in these cases. Alternatively, the user may choose to write FINAL for added clarity.

Ordinary column references always have running semantics. (To get final semantics4An"MEASURE
the FINAL LAST row pattern navigation operation instead of an ordinary colump-reference.)

Aggregates

FINAL SUM(A.Price) AS FinalSumOverA
ROWS PER MATCH

e, which references athrows of the current row pattern match. For example:

(Price)

nre
ntics is
g to

S, use

hen
attern

Dt
sum
"he

ailable

battern

=

(Price ¥+ A-Tax)

is a syntax error, because Price is implicitly qualified by the universal row pattern variable, whereas A.Tax is
explicitly qualified by A.

The COUNT aggregate has special syntax for row pattern matching, so that COUNT(A.*) may be specified.
COUNT(A.*) is the number of rows that are mapped to the row pattern variable A by the current row pattern
match, using running or final semantics as appropriate. As for COUNT(*), the * is implicitly qualified by the
universal row pattern variable, so that COUNT (*) is the number of rows in the current row pattern match, with
running or final semantics as appropriate.

©ISO/IEC 2016 — All rights reserved

Expressionsin MEASURES and DEFINE 41

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
4.5 Row pattern navigation operations

4.5

Row pattern navigation oper ations

There are four functions — PREV, NEXT, FIRST, and LAST — which enable navigation within the row pattern
by either physical or logical offsets.

451

The PH
no pre

DEFIN

The pn
than 1

PREV
A

The PH
previo

— P
— P

— P
S€

The of
There

The N
a phys

DEFIN

The pr
suppo
row w
since i
mappi

For ex

PREV and NEXT

REV function may be used to access columns of the previous row of a row pattern variable/If the
ious row, the null value is returned. For example:

E A AS PREV (A.Price) > 100

pceding example says that a row R, can be mapped to A if the preceding row R;,.1 has a price gr¢
D0. If the preceding row does not exist (i.e., Ry, is the first row of a row pattern partition), then
A.Price) is null, so the Boolean condition is not True, and thereforethefirst row cannot be mapj

REV function can accept an optional non-negative integer argunient indicating the physical offse
IS rows. Thus:

REV (A.Price, 0) is equivalent to A.Price
REV (A.price, 1) is equivalent to PREV (A.Price)s(Note: 1 is the default offset.)

REV (A.Price, 2) is the value of Price in the row*two rows prior to the row denoted by A with rur
mantics. (If no row is mapped to A, or if there'is no row two rows prior, then PREV (A.Price, 2) i

Fset must be a run-time constant (literal;;embedded variable, and the like, but not a column or a sub
s an exception if the value of the offset is negative or null.

EXT function may be used to.reference rows in the forward direction in the row pattern partition
cal offset. The syntax is the.same as for PREV, except for the name of the function. For exampl

E A AS NEXT (A.Price) > 100

pceding example_looks forward one row in the row pattern partition. Note that [ISO9075-2] does
t aggregates thatdook past the current row during DEFINE, because of the difficulty of predictin
Il be mappedto.what row pattern variable in the future. The NEXT function does not violate this pri
| navigates.to““future” rows on the basis of a physical offset, which does not require knowing the
ng of rows:

hmple; to find an isolated row that is more than twice the average of the two rows before and twg

reis

pater

bed to

to the

ning
5 null.)

juery).

using

D

not
0 what
nciple,
future

rows

after it

L Using-NEXT this-can-bs-expressed:

PATTERN (X)
DEFINE X AS X.Price > 2 * (PREV (X.Price, 2)

+ PREV (X.Price, 1)
+ NEXT (X.Price, 1)
+ NEXT (X.Price, 2)) /7 4

This query can also be expressed:

42 Row Pattern Recognition in SQL

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
4.5 Row pattern navigation operations

PATTERN ({- Y Y -} X {- Y Z -})
SUBSET W = (Y, 2)
DEFINE Z AS X.Price > 2 * AVG (W.Price)

The second formulation (without NEXT) requires the use of exclusion syntax using {- -} and the non-intuitive
definition of Z in terms of row pattern variables X and W. The row X is never really defined at all, though that
is the only row of interest. The first formulation (using NEXT) avoids these issues.

Note that the row in which PREV or NEXT is evaluated is not necessarily mapped to the row patternariable
in the argument. For example, in the first formulation of the example, PREV (X.Price, 2) is evaluated ir) a row
that is jhot even part of the match. The purpose of the row pattern variable is to identify the row from which to
offset, [not the row that is ultimately reached. This point is discussed further in Subclause 4.5:3/“Nesting FIRST
and LAST within PREV or NEXT”.

PREV|and NEXT may be used with more than one column reference; for example:

DEFINE A AS PREV (A.Price + A.Tax) < 100

When psing a complex expression as the first argument of PREV or NEXT @l qualifiers must be the same row
patterr variable (in this example, A).

The fifst argument of PREV and NEXT must have at least one column’reference or CLASSIFIER function.
For example, this is a syntax error:

PREV (1)

The preceding example is a syntax error because there.is'ho row pattern column reference or CLASSIHIER
functign. Without a column reference or CLASSIFIER function, there is no way to determine the row that is
the stafting point for offsetting. (The use of CLASSIFIER function within PREV or NEXT is discusseq in
Subclguse 4.8, “CLASSIFIER function”.)

PREV|and NEXT always have running semantics; the keywords RUNNING and FINAL cannot be usefl with
PREV|or NEXT. To obtain final semantics, use, e.g., PREV (FINAL LAST (A.Price)) as explained in
Subclduse 4.5.3, “Nesting FIRST and-LAST within PREV or NEXT".

452 | FIRST and LAST

FIRST] returns the value of an expression evaluated in the first row of the group of rows mapped to a row pattern
variable. For example:

FIRST| (A.Price)

The pr
then the value is null.

Similarly, LAST returns the value of an expression evaluated in the last row of the group of rows mapped to a
row pattern variable. For example:

LAST (A.Price)

The preceding example evaluates A.Price in the last row that is mapped to A (null if there is no such row).

©ISO/IEC 2016 — All rights reserved Expressionsin MEASURES and DEFINE 43

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
4.5 Row pattern navigation operations

The FIRST and LAST operators can accept an optional non-negative integer argument indicating a logical
offset within the set of rows mapped to the row pattern variable. For example:

FIRST

(A.Price, 1)

evaluates Price in the second row that is mapped to A. Consider the following data set and mappings:

Thus:

——Fable15—Exampledatasct-and-mappingstor HHRSFanrd EASF————

Row PRICE mapping
Ry 10 SA
R 20 >B
R 30 A
Ry 40 -C
Rs 50 SA

— FI
— FI
— FI
— FI

Note t
patterr

The of
colum

The fin
functid
functid

The fir

RST (A.Price) = FIRST (A.Price, 0) = LAST (A.Rrice, 2) = 10
RST (A.Price, 1) = LAST (A.Price, 1) = 30

RST (A.Price, 2) = LAST (A.Price, 0) = LAST (A.Price) =50
RST (A.Price, 3) is null, as is LAST (A.Price, 3)

nat the offset is a logical offset, moving within the set of rows { Ry, Rz, Rs } that are mapped to t
variable A. It is not a physical*offset, as with PREV or NEXT.

tional integer argument. must be a run-time constant (literal, embedded variable, and the like, bu
N or subquery). Thereis an exception if the value of the offset is negative or null.

st argument of FIRST or LAST must have at least one row pattern column reference or CLASSI
n. (The use of CLASSIFIER function within FIRST or LAST is discussed in Subclause 4.8, “CLASY
n”.) Thus EIRST(1) is a syntax error.

all quTifiers must be the same row pattern variable. For example:

st argument of FIRST or LAST may have more than one row pattern column reference, in whick

he row

[nota

FIER
bIFIER

case

FIRST

(A.Price + B.Tax)

is a syntax error, but

FIRST

(A.Price + A.Tax)

is acceptable.

44 Row Pattern Recognition in SQL

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
4.5 Row pattern navigation operations

FIRST and LAST support both running and final semantics. RUNNING is the default, and the only supported
option in DEFINE. Final semantics may be accessed in the MEASURES by using the keyword FINAL (partic-
ularly with ALL ROWS PER MATCH), as in:

MEASURES FINAL LAST (A.Price) AS FinalPrice
ALL ROWS PER MATCH

4.5.3 | Nesting FIRST and LAST within PREV or NEXT

FIRST|and LAST provide navigation within the set of rows already mapped to a particular row pattern variable;
PREV|and NEXT provide navigation using a physical offset from a particular row. These'kinds of navigation
may b¢ combined by nesting FIRST or LAST within PREV or NEXT. This permits exgressions such as the

followjng:

PREV (LAST (A.Price + A.Tax, 1), 3)

In thislexample, A must be a row pattern variable. It is required to have arow pattern column referencelor
CLASEBIFIER function, and all row pattern variables in the compound ©perator must be equivalent (A, fin this
examplle). The use of CLASSIFIER function nested within row pattert’navigation operations is discusged in
Subclduse 4.8, “CLASSIFIER function”.

This compound operator is evaluated as follows:

1) The inner operator, LAST, operates on the set of rows that are mapped to the row pattern variable A. In
thjs set, find the row that is “the last minus 1”. (Ifthere is no such row, the result is null.)

2) The outer operator, PREV, starts from the rew,found in step 1 and backs up 3 rows in the row pattgrn
pdrtition. (If there is no such row, the resultiis null.)

3) Leét Rbe an implementation-dependentirange variable that references the row found by step 2. In the
eXpression A.Price + A.Tax, replace.every occurrence of the row pattern variable A with R. The regulting
expression RPrice + R Tax is evaluated and determines the value of the compound navigation opefation.

For example, consider the data set’and mappings:

Table 16 — Data set and mappings for nesting example

Row [PRICE | TAX [mapping
Ry 10 1

Ro 20 2 -A

R3 30 3 -B

Ry 40 4 > A

Rs 50 5 -C

Re 60 6 -A

©ISO/IEC 2016 — All rights reserved Expressionsin MEASURES and DEFINE 45

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
4.5 Row pattern navigation operations

To evaluate

PREV (LAST (A.Price + A.Tax, 1), 3)
the following steps may be used:

1) The set of rows mapped to A is { Ry, Ry, Rg }. LAST operates on this set, offsetting from the end to arrive
at row Ry.

2) PREV performs a physical offset, 3 rows prior to Ry, arriving at Ry.
3) L&t Rbe arange variable pointing at R;. RPrice + R Tax is evaluated, giving 10+1 = 11.

Note that this nesting is not defined as a typical evaluation of nested functions. The inner’operator LAS|T does
not acfually evaluate the expression A.Price + A.Tax; it merely uses this expression toCdesignate a row pattern
variable (A) and then navigate within the rows mapped to that variable. The outer opéerator PREV perfqrms a
further physical navigation on rows. The expression A.Price + A.Tax is not actually evaluated as such, since

the row that is eventually reached is not necessarily mapped to the row pattern variable A. In this example, Ry

is not mapped to any row pattern variable.

4.6 | Ordinary row pattern column references reconsidered

An ordinary row pattern column reference is one that is neither aggregated nor navigated. For example

A.Prig¢e

Subclduse 4.3, “RUNNING vs. FINAL keywords®; stated that ordinary row pattern column references always
have r@inning semantics. This means:

1) InDEFINE, an ordinary column reference references the last row that is mapped to the row pattern variable,
up to and including the current row>Tf there is no such row, then the value is null.

2) InNMEASURES, there are two-subcases:

a)| If ALL ROWS PERIMATCH is specified, then there is also a notion of current row, and the senpantics
are the same as imDBDEFINE.

b) If ONE ROW .PER MATCH is specified, then conceptually the engine is positioned on the lasf row
of the match. An ordinary column reference references the last row that is mapped to the row pattern
variable) anywhere in the pattern. If the variable is not mapped to any row, then the value is ngll.

These gemantics are the same as the LAST operator, with the implicit RUNNING default. Consequently, an
ordinafy.coelumn reference such as:

X.Price

is equivalent to:

46 Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
4.6 Ordinary row pattern column referencesreconsidered

RUNNING LAST (X.Price)

4.7 MATCH_NUMBER function

bund.
t
ordering between row pattern partitions. MATCH_NUMBER () is a nullary function that returnsan exact

numerjc value with scale 0 (zero) whose value is the sequential number of the match within the row pagtern
partition.

All prgvious examples of MATCH_NUMBER () have shown it used in MEASURES.t:is also possiblg to use
MATJH_NUMBER () in DEFINE, where it can be used to define conditions that depend upon the match
numbdr. For example:

PATTERN ((A+ | B+))

DEFINE A AS (MOD (MATCH_NUMBER (), 2) = 1)
AND A_Price > PREV (A.Price)),

B AS (MOD (MATCH_NUMBER (), 2) = 0)
AND B.Price < PREV (B.Price))

The cqndition for A can only be true on odd-numbered matchés, and the condition for B can only be trjie on
even-numbered matches. Thus, the matches will alternate detween A+ and B+.

MATJH_NUMBER () is not permitted except in MEASURES and DEFINE. For example, the following is a
syntax|error:

SELECT MATCH_NUMBER Q)
FROM Ticker

4.8 | CLASSIFIER function

The clgssifier of a row is the:primary row pattern variable to which the row is mapped by a row pattern match.
The clgssifier of a row that’is not mapped by a row pattern match is null.

The CLASSIFIER function returns a character string whose value is the classifier of a row. The CLASSIFIER
functign has one-Optional argument, a row pattern variable, defaulting to the universal row pattern varigble.

The simplest usage of CLASSIFIER is with no argument, as seen in the example in Subclause 3.2, “EXample
of ALL. ROWS PER MATCH”:

MEASURES . ..
CLASSIFIER () AS Classy, ...
ALL ROWS PER MATCH

In this example, the CLASSIFIER () function returns the classifier of the current row, which is assigned as the
value of the row pattern measure Classy. Subclause 3.2, “Example of ALL ROWS PER MATCH?”, shows the
result of the example query on the sample data, illustrating how the CLASSIFIER function returns the classifier
of each row of a row pattern match.

©ISO/IEC 2016 — All rights reserved Expressionsin MEASURES and DEFINE 47

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
4.8 CLASSIFIER function

The classifier of the starting row of an empty match is the null value. This can be seen in the example in
Subclause 3.10.1, “Handling empty matches”, of a query using ALL ROWS PER MATCH SHOW EMPTY
MATCHES.

Optionally, the CLASSIFIER function may take a single argument, a row pattern variable RPV; the default is
the universal row pattern variable. The argument is used to specify a set of rows using running semantics,
namely, the set of rows up to and including the current row that are mapped to RPV.

The argument will typically be a union row pattern variable; the value returned tells which primary row pattern
variable among the components of the union row pattern variable to which a row was mapped. For'example:

MEASURES CLASSIFIER (AB) AS AorB

PATTERN (A | B | CO)+
SUBSET AB = (A, B)

In thislexample, AB is a union row pattern variable. The value of the row pattern4reasure AorB is eithar A or
B, whilchever is the classifier of the last row that mapped to A or B. If no row_mapped to A or B, the value is
null.

The CLASSIFIER function may be used in an aggregate. For example:

ORDER|BY Tradeday

MEASURES ARRAY_AGG (CLASSIFIER () ORDER BY Tradeday)
AS ClassifierArray

ONE ROW PER MATCH

In the preceding example, one row is created for each rewypattern match RPM, with a single row pattern measure,
whichis an array of character strings. The elementsef the array are the classifiers of the rows in RPM, with
one arfay element for each row of the row pattern‘input table that is mapped by RPM. Note that the array is
orderefl using the same ordering as the row pattern partition. This technique can be used to obtain a value
reflect|ng the precise pattern that was detected, while using ONE ROW PER MATCH instead of ALL ROWS
PER MIATCH.

The CLASSIFIER function may be hested within a row pattern navigation operation. For example:

PREV (CLASSIFIER ())

The preceding example returns the classifier of the preceding row. This might be used in DEFINE so that the
definitjon of one row pattern variable might depend on the classifier of a previously matched row. For example:

PATTERN ((A KB) C)
DEFINE A AS (.}

B AS—. .,
C 'AS CASE
WHEN PREV (CLASSIFIER ()) = "A" AND Price > 100
THENI
WHEN PREV (CLASSIFIER ()) = "B" AND Price < 100
THEN 1
ELSE O
END = 1

In this example, the first row might be mapped to either A or B. The definition of C can test PREV (CLASSIFIER
() to learn to which row pattern variable the first row mapped. If the first row mapped to A, then C will be true
if Price > 100; if the first row mapped to B, then C will be true if Price < 100.

48 Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
4.8 CLASSIFIER function

This particular example would be more easily written as:

PATTERN ((A AC | B BC))
DEFINE A AS ...,
BAS ...,
AC AS Price > 100,
BC AS Price < 100

HoweyJer, The example does iITustrate a general technigque that mignt be userul Tor more complex patterns that
want tp inquire about the mapping chosen in earlier rows.

When pesting CLASSIFIER within NEXT, there is an important distinction between MEASURES and DEFINE.
Consider, for example:

NEXT (CLASSIFIER ())

which jasks for the classifier of the next row. This expression, used in DEFINE, will_return null, becausg the

next rqw has not been mapped yet when considering how to map the current row., Used in MEASURES, the
entire pattern has been mapped, and the preceding example is able to return the classifier of the row after the
curreng row. (If the current row is the last row that is mapped, the result is\nutl.)

Here i$ an example of the CLASSIFIER function nested in a compound row pattern navigation operatipn:

NEXT (RUNNING LAST (CLASSIFIER (U), 2) 3)
This example would be evaluated as follows:

1) Find the set of rows mapped to U. In DEFINE, thisscan only be rows up to and including the current row;
infMEASURES, this can be any rows mapped to U'in the completed match.

2) RUNNING LAST restricts to the set of rows that map to U up to and including the current row. In DEFINE,
thjs is no change from step 1. In MEASURES with ONE ROW PER MATCH, we are positioned dn the
lagt row, so this also is no change. In MEASURES with ALL ROWS PER MATCH, this may result in
dipcarding some of the rows mappedito U.

3) Injthe set of rows remaining after step 2, find the row that is offset 2 from the end. This requires at|least
three rows remaining after step'2; if there are not that many, then the result is null. (This is the functipnality
off LAST.)

4) Npw move forward.in the row pattern partition three rows. If there are not enough rows in the row pattern
pdrtition, the result-is null. (This is the functionality of NEXT.)

5) Fipally, findthe primary row pattern variable to which the row is mapped; this is the result. If the now is
nqt mapped,the result is null. (This is the functionality of CLASSIFIER.)

The eXplicit-or implicit argument of CLASSIFIER is a row pattern variable. This row pattern variable is used
in the lame fashion as the qualifier of a column reference in the argument of a row pattern navigation opgration.

For example:

NEXT (CLASSIFIER () || Name)

is a permissible expression, since CLASSIFIER () and Name both reference the universal row pattern variable.
On the other hand,

©ISO/IEC 2016 — All rights reserved Expressionsin MEASURES and DEFINE 49

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
4.8 CLASSIFIER function

NEXT (CLASSIFIER (A) || Name)

is not permissible, because the CLASSIFIER function references the row pattern variable A, whereas the column
reference Name references the universal row pattern variable. Similarly:

NEXT (CLASSIFIER () || A-Name)

is not permissitte:

The same rule applies to the argument of an aggregate: all row pattern variables referenced explicitly of
implicjtly must be the same. Thus the following is a syntax error:

ARRAY [AGG (CLASSIFIER () || A-Name)

The CLASSIFIER function is not permitted except in MEASURES and DEFINE. For-example, the folJowing
is a syhtax error:

SELECT CLASSIFIER O
FROM Ticker

50 Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
5.1 Exampleof row pattern recognition in a window

5 Row pattern recognition: WINDOW clause

Featur
to incl
expres

o RO20 _“Row pattern recognition: WINDOW clause” of [1ISQ9075-2] enhances the WINDOW clause

ide row pattern matching. In [ISO9075-2], a window is a data structure defined on the result of-a
5ion> (the FROM...WHERE...GROUP BY...HAVING... clauses), producing a derived table: Thi

structyre does three things:

1) Partitions the rows of the derived table according to zero or more columns.

<table
5 data

2) Within each window partition, orders the rows of the derived table according to zero-or more expregssions.

3) Fc

Using
is appl

R020, row pattern recognition may be used to further reduce:the window frame. Row pattern reco
icable only to window frames that start at the current row R’ The window frame resulting from s

will bg called the “full window frame” of R, and the window(frame after reduction by pattern matching

called

partitign serves as the row pattern partition and the window ordering serves as the row pattern ordering

r each row R in a window partition, defines a window frame, which is a subset of the ordered window
pdrtition. The endpoints of the window frame may be the beginning or end ofthe window partition,
bq defined relative to the current row using either a physical offset (row, eount), a logical offset (a

added to or subtracted from the only sort column), or a group count (number of groups, defined as
urjder the ordering).

br may
alue
peers

jnition
fep 3
will be

the “reduced window frame” of R. When performing. row pattern recognition in a window, the window

5.1 | Exampleof row pattern regognition in a window
The eample from Subclause 3.1, “Example of ONE ROW PER MATCH?”, is adapted to use row patte
matching in the WINDOW clause:below:
SELECT T.Symbol, /* ticker symbol */

T.Tradeday, /* trade day */

T.Price, /* price on day of trading */

Classy OVER'W, /* classifier */

Startp OVER-W, /* starting price */

Bottomp\OVER W, /* bottom price */

Endp<QVER W, /* ending price */

Avgp.OVER W /* average price */
FROM Ticker AS T
WINDOW_WYAS

(PARTITION BY Symbol
ORDER BY Tradeday
MEASURES A.Price AS Startp,

LAST (B.Price) AS Bottomp,
LAST (C.Price) AS Endp,
AVG (U.Price) AS Avgp

ROWS

BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOWING

AFTER MATCH SKIP PAST LAST ROW

©ISO/IE

C 2016 — All rights reserved Row pattern recognition: WINDOW clause 51

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)

51

))

52

Example of row pattern recognition in a window

INITIAL

PATTERN (A B+ C+)

SUBSET U = (A, B, ©)

DEFINE /* A defaults to True, matches any row */
B AS B.Price < PREV (B.Price),
C AS C.Price > PREV (C.Price)

the range variable T. Since there is no WHERE, GROUP BY, or HAVING clause, the result of the
clfuse is the row pattern input table in this example.

INDOW W declares the window name W.

PARTITION BY specifies how to partition the row pattern input.table. The PARTITION BY claus
ligt of columns of the row pattern input table. This clause is optional; if omitted, there are no row

pdrtitioning columns, and the entire row pattern input table constitutes a single row pattern partitign.

ORDER BY specifies how to order the rows within row(pattern partitions of the row pattern input
The ORDER BY clause is a list of columns of the row pattern input table. This clause is optional; if o
the order of rows is completely non-deterministic. However, since non-deterministic ordering will
the purpose of most row pattern recognition, the ORDER BY clause will usually be specified.

EASURES specifies row pattern measures, whose values are calculated by evaluating expressions
to|the match. The values of row pattern pigasures are accessed using row pattern measure function
illustrated in the SELECT list.

ROWS specifies the unit to use in defining the full window frame. The other choices, RANGE and GR
arp not permitted with row pattern matching in windows.

BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING is one way to specify the full w
frame. In this examples.for any row Rin a row pattern partition P, the full window frame consists 0f
al| rows that follow. R.in the row pattern partition P. The full window frame is subsequently reducg
jupt the rows constituting a pattern match.

successfullyfinding a match. In this example, AFTER MATCH SKIP PAST LAST ROW specifieg
pdtternmatching will resume after the last row of a successful match. When a row is skipped, its r
w|ndow frame is empty.

signed
FROM

P i a
attern

>

table.
mitted,
defeat

related
5, as

DUPS,

indow
Rand
dto

AFTER MATCH SKIP clause specifies where to resume looking for the next row pattern match after

that
pduced

INITIAL specifies that the pattern must match starting at the first row of the full window frame. If
is no such pattern match, the reduced window frame is empty. The alternative to INITIAL is SEEK,

there
which

specifies to seek the first row pattern match in the full window frame; if there is none, the reduced window

frame is empty.

PATTERN specifies the row pattern that is sought in the row pattern input table. A row pattern is a regular

expression using primary row pattern variables. In this example, the row pattern has three primary
pattern variables (A, B, and C).

row

Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
5.1 Exampleof row pattern recognition in a window

— SUBSET defines the union row pattern variables. In this example, U is defined as the union of the primary
row pattern variables A, B, and C. The SUBSET clause is optional.

— DEFINE specifies the Boolean condition that defines a primary row pattern variable; a row must satisfy
the condition in order to be mapped to a particular primary row pattern variable. If a primary row pattern
variable is not defined in the DEFINE clause, then its definition defaults to a condition that is always true,
meaning that the primary row pattern variable can match any row.

The repult of the preceding query on the sample row pattern partition is:

Table 17 — Window Example Query Results

SYM [TRADEDAY | PRICE | CLASSY | STARTP [BOTTOMP | ENDPO| AVGP
BOL

XYZ | 2009-06-08 50

XYZ | 2009-06-09 60 A 60 35 45 45.8

XYZ | 2009-06-10 49

XYZ | 2009-06-11 40

XYZ | 2009-06-12 35

XYZ | 2009-06-15 45

XYZ | 2009-06-16 45

XYZ | 2009-06-17 45 A 45 43 70 51.4

XYZ | 2009-06-18 43

XYZ | 2009-06-19 47

XYZ | 2009-06-22 52

XYZ | 2009-06-23 70

XYZ | 2009-06-24 60

5.2 ~Summary of the syntax

The syntax of row pattern recognition in windows is summarized in the following table:

©ISO/IEC 2016 — All rights reserved Row pattern recognition: WINDOW clause 53

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
5.2 Summary of the syntax

Table 18 — Row pattern recognition in windows — syntax summary

Clause of Optional? | Notes Cross-reference
window
definition
Ekisting window | yes no default Subclause 5.5, "Windows
name defined on windows”
PARTITION BY | yes if omitted, the row pattern input | Subclause 5.6, “PARTITION
table constitutes one row pattern | BY”
partition
ORDER BY yes if omitted, there is a non-determin- | Subclause 5.7, “ORDER BY”
istic ordering in each row pattern
partition
MEASURES yes no default Subclause 5.8, “MEA-
SURES”
ROWS, RANGE, | no only ROWS is permitted with row | Subclause 5.9.1, “ROWS
GROUPS pattern recognition BETWEEN CURRENT
ROW AND”
BETWEEN CUR- | no BETWEEN CURRENT ROW Subclause 5.9.1, “ROWS
RENT ROW AND is required with row pattern | BETWEEN CURRENT
AND ... recognitien ROW AND”
EXCLUDE NO | yes EXCLUDE NO OTHERS is the | Subclause 5.9.2, “EXCLUDE
OTHERS default; other EXCLUDE options | NO OTHERS”
are forbidden with row pattern
matching
AFTER MATCH | yes default is AFTER MATCH SKIP | Subclause 5.10, “AFTER
SKIP PAST LAST ROW MATCH SKIP”
INITIAL, SEEK. :'yes default is INITIAL Subclause 5.11, “INITIAL
vs. SEEK”
PATTERN no same as MATCH_RECOGNIZE | Subclause 5.12, “PATTERN”
SUBSET yes same as MATCH_RECOGNIZE | Subclause 5.13, “SUBSET][’
DEFINE no same as MATCH_RECOGNIZE | Subclause 5.14, “DEFINE”

5.2.1 Syntactic comparison to windows without row pattern recognition

Note the following differences between windows with and without row pattern matching:

54 Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2
5.2 Summary of the

016(E)
syntax

1) Windows with row pattern matching must have the PATTERN and DEFINE clauses, and optionally may
also have the MEASURES, AFTER MATCH SKIP, INITIAL, SEEK, and SUBSET clauses. Windows
without row pattern matching have none of these clauses.

2) Windows with row pattern matching must start with the current row, and must specify ROWS (nor RANGE
or GROUPS).

3) The only permitted EXCLUDE clause with row pattern matching is EXCLUDE NO OTHERS, which is
the default.

5.2.2 | Syntactic comparison to MATCH_RECOGNIZE

The syntax for row pattern recognition in a window differs from MATCH_RECOGNIZE in the following

respecfs:

1) Ropw pattern recognition in windows includes the window syntax of conyentional windows, with spme
cdnstraints described in Subclause 5.2.1, “Syntactic comparison to wifdows without row pattern rgcogni-
tign”.

2) Range variables declared in the FROM clause are visible in the RARTITION BY and ORDER BY |clause
ofla window, unlike MATCH_RECOGNIZE. See Subclause®:6, “PARTITION BY”, and Subclauge 5.7,
“ORDER BY”.

3) The ORDER BY clause may use scalar value expressions, not just columns. See Subclause 5.7, “ORDER
BY”.

4) The options ONE ROW PER MATCH and ALEL’ROWS PER MATCH are not applicable to windows,
arld cannot be specified. (Row pattern recognition in windows is closer in spirit to ONE ROW PER MATCH,
thpugh it also has some similarity to ALe ROWS PER MATCH WITH UNMATCHED ROWS.)

5) Row pattern recognition in a window, has a choice between INITIAL and SEEK.

6) The MATCH_NUMBER funection is not supported.

7) Row pattern measures are.not columns in the result of a window; instead, row pattern measures ar¢ refer-
erjced using OVER, likea window function.

5.3 | Row pattern input table

The row pattern input table for row pattern recognition in a WINDOW clause is the result of the FROM
WHERE,\GROUP BY, and HAVING clauses that precede the WINDOW clause.

The example in Subclause 5.1, “Example of row pattern recognition in a window”, does not have WHERE,
GROUP BY, or HAVING clauses, so the row pattern input table in that example is the result of the FROM
clause, that is, the table Ticker.

©ISO/IEC 2016 — All rights reserved

Row pattern recognition: WINDOW clause 55

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
5.4 Row pattern variablesand other range variables

5.4

Row pattern variables and other range variables

There are two sets of range variables in a window with row pattern recognition:

1) The range variables declared in the FROM clause. (In the example in Subclause 5.1, “Example of row
pattern recognition in a window”, T is such a range variable.)

S

2) T
“B

R
be

Note t
(Since
scope,

For ex

SELEC
FROM 1
WINDO

There
FROM
declare

Any column names to be refereneed in either the MEASURES or DEFINE must be unique across the 6

FROM
or DEE
ities.

For ex

SELEC
FROM
WHERE

e row pattern variables declared in the PATTERN and SUBSET clauses. (In the example in‘Subclal
xample of row pattern recognition in a window”, A, B, C, and U are row pattern variables.)

pw pattern variables may be referenced in the MEASURES, DEFINE, and SUBSETclauses. They
used in the SELECT list.

hat the two sets of range variables are declared in different clauses and haveimutually exclusive s
they are walled off in mutually exclusive scopes, it is permitted to use-the same range variables
though that is a confusing possibility that it is probably best to avoid.)

hmple, the following is a syntax error:

[Runlength OVER W
[icker T
W AS (PARTITION BY Symbol
ORDER BY Tradeday
MEASURES COUNT (T.*) AS Runlength
ROWS BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOWING
PATTERN (A*)
DEFINE A AS T.Price > PREV (T.Price))

pre three syntax errors in this example. The first is COUNT (T.*). T is a range variable defined ir
clause and cannot be referencediin MEASURES. Instead of T, the variable to use here is A, sin
d in the PATTERN. Similarly,in the DEFINE, the two instances of T are errors.

clause, because the range variables in the FROM clause are not available to disambiguate in MEAS

hmple, suppose both Emp and Dept have a column called Name. In the following query:

[Aname—OVER W, Bname OVER W
Fmp’ ,AS E, Dept AS D

 in the

seb5.1,

cannot

cope.
n each

the
eAis

ntire
URES

FINE. The workaragund is to rename column names in the FROM clause as necessary to remove ambigu-

E.Deptno = D.Deptno

WINDO

56 Row Pattern Recognition in SQL

W AS (PARTITION BY E.Deptno
ORDER BY E.Empno
MEASURES A.Name AS Aname,
B.Name AS Bname
ROWS BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOWING

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
5.4 Row pattern variables and other range variables

PATTERN (A B)
DEFINE B AS B.Salary > A_Salary)

The expressions A.Name and B.Name in the MEASURES clause are ambiguous, because they could refer to
either Emp.Name or Dept.Name. The solution is to rename at least one of them in the FROM clause, like this:

SELECT Aname OVER W, Bname OVER W
FROM (SELECT Name AS Ename, Deptno, Salary
FROM Emp) AS E, Dept AS D
WHERE|E.Deptno = D.Deptno
WINDOY W AS (PARTITION BY E.Deptno
ORDER BY E.Empno
MEASURES A.Name AS Aname,
B.Name AS Bname
ROWS BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOWING
PATTERN (A B)
DEFINE B AS B.Salary > A.Salary)

Note that row pattern variables are not available in the SELECT list. The foHowing example is a syntax error:

SELECT A.Price
FROM Ticker AS T
WINDOW W AS (PARTITION BY Symbol
ORDER BY Tradeday
MEASURES COUNT (A.*) AS Runlength
ROWS BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOWING
PATTERN (A*)
DEFINE A AS A.Price > PREV.(A.Price))

In this|example, A is a row pattern variable, which makes it visible in MEASURES and DEFINE. A is hot
visiblg in the SELECT list. There is no loss:0f expressive power; any expression of row pattern variabl¢s can
be plaged in MEASURES and then referenced by its measure name, like this:

SELECT Lasta OVER W
FROM Ticker AS T
WINDOW W AS (PARTITION BY Symbol
ORDER BY..Tradeday
MEASURES) LAST (A.Price) AS Lasta
ROWS (BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOWING
PATTERN (A*)
DEFINE A AS A.Price > PREV (A.Price))

55 Windowsdefined on windows

[1SO9075-2] allows one window to be defined on another window by referencing an existing window name.
For example:

FROM Ticker AS T

WINDOW W1 AS (PARTITION BY Symbol),
W2 AS (W1 ORDER BY Tradeday),

©ISO/IEC 2016 — Al rights reserved Row pattern recognition: WINDOW clause 57

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
5.5 Windows defined on windows

W3 AS (W2 ROWS BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOWING)

Here window W2 inherits its partitioning from W1, and W3 inherits its partitioning and ordering from W2.

As an example of this capability using row pattern recognition:

SELECT Lastprice OVER W3

FROM 1
WINDO

It is nd
BETW
that in

5.6

PART
range
MATQ
formin

5.7

ORDE
1) R

2)

SO Z

Tcker—AS—T
W1l AS (PARTITION BY Symbol),
W2 AS (W1 ORDER BY Tradeday),
W3 AS (W2 MEASURES LAST(A.Price) AS Lastprice
ROWS BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOWING
PATTERN (A+)
DEFINE A AS A.Price > PREV (A.Price))

t possible to further subdivide the window definitions. For example, it is,net permitted to put RQ
EEN CURRENT ROW AND UNBOUNDED FOLLOWING in one window definition, and then
another window definition that adds the row pattern recognition features.

PARTITION BY

TION BY is almost the same in windows and in MATCH_RECOGNIZE. The one difference is
ariables declared in the FROM clause are available in the PARTITION BY of a window, but nof
H_RECOGNIZE. Note that a row pattern partition is the same thing as a window partition wher|
g row pattern recognition in a window.

ORDER BY

R BY is almost the same(n,windows and in MATCH_RECOGNIZE. The differences are:

inge variables declareghin the FROM clause are available in the ORDER BY of a window, but ng
ATCH_RECOGNIZE.

bneral scalar value expressions may be used in the ORDER BY of a window, but only column refe
by be useddn.the ORDER BY in MATCH_RECOGNIZE.

5.8

WS
inherit

that
in
per-

tin

rences

MEASURES

Row pattern measures in a window definition differ from row pattern measures in MATCH_RECOGNIZE as
follows:

1) The MATCH_NUMBER function is not supported in windows.

2) Row pattern measures are referenced as window functions in the SELECT list using OVER, not as column
references.

58 Row Pattern Recognition in SQL

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
58 MEASURES

3) There is no real distinction between running and final semantics. The RUNNING and FINAL keywords
may be used with aggregates, FIRST, and LAST, but the semantics is the same no matter which keyword
is used. Row pattern measures are computed positioned on the last row of the match, where running and
final semantics are identical.

5 9 Cullvwindow framao and rodiiced window framae
. oo oOvwTrarmeanoeautc oWt c

A winglow associates with each row Ra set of rows, called the window frame of R. The definitionofthe window
frame |s essentially a subtractive process:

1) Afthe outset, there is the entire window partition that contains R,

2) Ngxt, zero or more rows are removed from the window partition, based on their’position relative tg Rin
the ordering of rows of the window partition. The criterion at this stage is calledthe “window frame extent”.

3) Next, zero or more rows are removed, based on peer relationships to R, Gsing the EXCLUDE clause.

The thfee steps above are used for all windows. The result is called the ‘“full™window frame”. When row pattern
recogrition is used, the window partition is also the row pattern partition; and there is one more step:

4) Almatch to the row pattern is sought within the full window frame; the rows that are mapped by thig match
(it any) constitute the “reduced window frame”. If there iSno match, the reduced window frame is empty.
(SKkipped rows can also cause an empty reduced windew.frame; see Subclause 5.15, “Empty matches and
empty reduced window frames”.)

5.9.1 | ROWSBETWEEN CURRENT ROW AND

When performing row pattern recognitiomin a window, only two options are allowed for specifying the window
frame pxtent:

— ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING: this option specifies that the
fulll window frame consists of the set of rows from the current row through the end of the row pattg¢rn
pdrtition.

— ROWS BETWEEN CURRENT ROW AND offset FOLLOWING: this option specifies that the full window
frame extends €rom the current row through some positive offset, which must be a positive integer] and
specifies thelnumber of rows after the current row. For example, ROWS BETWEEN CURRENT ROW
AND 1 FOLLOWING specifies a full window frame with 2 rows, the current row and the one aftey it.

59.2 EXCLUDE NO OTHERS

The window EXCLUDE clause has four possibilities:

1) EXCLUDE CURRENT ROW: this is not permitted with row pattern recognition, since the design is that
the full window frame must begin with the current row.

2) EXCLUDE GROUP: also not permitted with row pattern recognition, because this would exclude the
current row, plus any ties under the window ordering.

©ISO/IEC 2016 — All rights reserved Row pattern recognition: WINDOW clause 59

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
5.9 Full window frame and reduced window frame

3) EXCLUDE TIES: not permitted with row pattern recognition, because this could create a hole in t
window frame, which is contrary to the spirit of row pattern recognition.

4) EXCLUDE NO OTHERS: permitted with row pattern recognition. This is the default.

Thus the only permitted option with row pattern matching is the default, EXCLUDE NO OTHERS.

he full

510 AFTER MATCH SKIP

The ogtions for AFTER MATCH SKIP are the same as in MATCH_RECOGNIZE; see Subclause’3.11, “A
MATQH SKIP”, for details.

As in MATCH_RECOGNIZE, it is a run-time error to skip to a non-existent row, or;to:sKkip to the first
a match.

Since pnly one row pattern match per full window frame is sought, the semantics of AFTER MATCH §
in a window are as follows. Windows are processed in the sort order withir,a;row pattern partition. If a
is skipped as a consequence of a row pattern match in a full window frame\prior to R, then the reduced W
frame pf R s set to empty, without attempting any row pattern matchfor’'R. This is illustrated in an exa
in Subrlause 5.15, “Empty matches and empty reduced window frames”.

S11| INITIAL vs. SEEK

If a royv R has been skipped by a prior row PR, then'the reduced window frame of R is empty.

If Rhgs not been skipped, then a row patternmatch is attempted in the full window frame of R. INITIA
SEEK [are two options that determine wherg to look for a match within the full window frame:

1) INITIAL is used to look for a match whose first row is R.

2) SEEK is used to permit a seareh for the first match anywhere from R through the end of the full w
frame.

In eithgr case, the reduced window frame comprises the rows that are mapped by the match; if there is no
then the reduced window; frame is empty. For a worked example, see Subclause 5.15, “Empty matches
empty[reduced windaw frames”.

The kqyword INTTAL or SEEK is placed as a modifier before the PATTERN. The default is INITIAL.

FTER

row of

KIP
row R
indow
mple

L and

ndow

match,
and

5.12 PATTERN

This clause is precisely the same as in MATCH_RECOGNIZE, except that the anchors (* and $) are not per-

mitted with row pattern matching in windows. See Subclause 3.12, “PATTERN?”, for details.

60 Row Pattern Recognition in SQL ©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
513 SUBSET

5.13 SUBSET

This clause is precisely the same as in MATCH_RECOGNIZE. See Subclause 3.13, “SUBSET”, for details.

5.14 DEFINE

This clause is precisely the same as in MATCH_RECOGNIZE. See Subclause 3.14, “DEFINE”, for details.

5.15 | Empty matches and empty reduced window frames

An empty match will cause the reduced window frame to be empty. Empty reduced window frames can also
arise if there is no match at all, as in these circumstances:

1) AFTER MATCH SKIP on a prior row has caused the current row to.bé-Skipped, so no match is attempted.

2) T:[e query specifies or implies INITIAL and there is no match starting at the current row.

3) The query specifies SEEK but there is no match anywhere-between the current row and the end of the full
w|ndow frame.

So thefe are two ways to get an empty reduced window frame: by finding an empty match, or by not firjding a
matchjat all.

The segmantics for row pattern measures of empty.reduced window frames are shown in this table:

Table 19 — Restilts for empty match and no match

Measure empty match | no match
CLASSIFIER () null null
COUNT 0 null

other aggregates-(e.g., SUM, AVG, etc. null null

row patterirnavigation operations (e.g., PREV, NEXT, FIRST, | null null
LASF

ordinary column references null null

Thus COUNT (*) may be used to distinguish an empty match from no match at all. If an empty match is found,
then COUNT (*) as a row pattern measure will be O; if there is no match at all, then COUNT (*) as a row pattern
measure will be null.

Note the following subtlety: If the query specifies COUNT (*) as a non-measure window function, then the
count over an empty window frame is 0 in any case. It is only when COUNT (*) is used as a row pattern measure
that it can be used to distinguish an empty match from no match at all. For example:

©ISO/IEC 2016 — Al rights reserved Row pattern recognition: WINDOW clause 61

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)

5.15 Empty matches and empty reduced window frames

SELECT S, D,

Kount OVER W AS ''‘Measure',

COUNT (*) OVER W AS "Window Function"

FROM T
WINDOW W AS (ORDER BY S

MEASURES COUNT (*) AS Kount

ROWS BETWEEN CURRENT ROW

Consig
the ne
windo

Notes:

1) O
pa
bu

AND UNBOUNDED FOLLOWING

AFTER MATCH SKIP PAST LAST ROW
INITIAL PATTERN (A*)
DEFINE A AS A.D = "yes")

er the following data, shown in the first two columns, with the other two columns,e¥output shoy
t two columns, and the internal information (skip indicator, whether a match was found, and the r
v frame) in the right three columns:

Table 20 — Computation of matches and window function results

result table internal information

S D Measure | Window | skipped? | mateh reduced window
Function found? | frame

1 yes 2 2 False yes {Rows 1,2}

2 yes null 0 True no {}

3 no 0 0 False yes {}

4 no |0 0 False | yes i}

5 yes 3 3 False yes {Rows 5, 6,7}

6 yes null 3 True no {}

7 yes aull 0 True no {}

N Row 1,amatch of length 2 is found. The window frame consists of rows 1 and 2. COUNT (*)
ttern measure and COUNT (*) as non-measure window function both compute 2. Row 1 is not sk
t Row)2 is skipped because of AFTER MATCH SKIP PAST LAST ROW.

VN in
bduced

as row
ipped,

2) O

PonarD thta vonasaay Letnnadl " M P | PPN PN 2N P PO B . PN PYTRPNC Y N | ST U2 PP 7
FIRUVW £, TS TUVW Wdo SRTJPUTU do A TTOUTL UT UITT TTatLImT UTT TRUVY L. CUTISCYUCTTIU y UTC VWITTUUVY TTdl

e is

empty. COUNT (*) as row pattern measure is null because the row was skipped, whereas COUNT (*) as

non-measure window function is 0 because the window frame is empty.

3) On Row 3, the engine is at a row that was not skipped, so it looks for an initial pattern matching A*. An
empty match is found, so the window frame is empty but the row is not skipped. COUNT (*) as row pattern
measure and COUNT (*) as non-measure window function are both 0. With an empty match, no rows are
marked as skipped.

62 Row Pattern Recognition in SQL

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IEC TR 19075-5:2016(E)
5.15 Empty matches and empty reduced window frames

4) Row 4 shows a row following an empty match; its skipped indicator is not set. Once again there is an
empty match, so the behavior is the same as at Row 3.

5) At Row 5, the skipped indicator is not set. There is a match of length 3. The window frame consists of
Rows 5 through 7. COUNT (*) as row pattern measure and COUNT (*) as non-measure window function
both compute 3. The skipped indicator for Row 6 and Row 7 is set.

6) Row 6 and Row 7 have the skipped indicator set, so they behave like Row 2.

5.16 | Prohibited nesting

Row pattern recognition in windows is subject to the same restrictions on nesting as in MATCH_RECOGNIZE:
1) Nesting one row pattern recognition within another is prohibited.

2) Oter references in MEASURES or DEFINE are prohibited. This means-that a row pattern recognjtion
mpy not reference any table in an outer query block except the row pattern input table. (The row pattern
input table is referenced using row pattern variables.)

3) Suybqueries in MEASURES or DEFINE may not reference rowpattern variables.
4) Row pattern recognition may not be used in recursive queries:

These pestrictions are illustrated in the following Subclauses.

5.16.1 Row pattern recognition nested within another row pattern recognition

Nesting one row pattern recognition withinanother is prohibited. For example, the following is a syntax error:

SELECT ...

FROM Ticker

WATCH_RECOGNIZE (

ORDER BY ...

MEASURES ...

PATTERN . .=

DEFINE A AS’0 = (SELECT Kount OVER W
FROM Stock2
WINDOW W AS (

MEASURES COUNT (B.*) AS Kount

)
) AS M

A possible workaround is to relegate the nested row pattern recognition to a view or SQL-invoked function.

5.16.2 Outer referenceswithin arow pattern recognition query

The following is a syntax error (note the underlined range variables T):

©ISO/IEC 2016 — All rights reserved Row pattern recognition: WINDOW clause 63

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

ISO/IE

C TR 19075-5:2016(E)

5.16 Prohibited nesting

SELECT (SELECT Avg_Price OVER W

FROM Ticker
WINDOW W AS (
ORDER BY Tradeday
MEASURES AVG (X.Price) AS Avg_Price
PATTERN (X+)
DEFINE X AS T.Price >= AVG (X.Price))

FROM Toast AS T

In the preceding example, the column reference T.Price in the DEFINE clause is an outer referenceto thg

variab|

It may|
routing

5.16.3

A subg
not pe
outer

SELECT Firstday OVER W
FROM Ticker
WINDOW W AS (
ORDER BY Tradeday
MEASURES A_Tradeday AS Firstday
PATTERN (A B+)
ROWS
BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
DEFINE A AS A.Price > 100,
B AS B.Price <
(SELECT AVGN(S.Price)
FROM Ticker S
WHERE\'S . Tradeday BETWEEN A.Tradeday - INTERVAL "1" YEAR
AND A.Tradeday)
)
In thislexample, the'definition of B involves a subquery that is correlated with the row pattern variable A
underljning). This\is a syntax error, since subqueries of row pattern matching may not reference row p3g
variables.

)

e T defined in the outer block; therefore this example is a syntax error.

be possible to work around this limitation by placing the row pattern recognitiominran SQL-inv
, passing as arguments the values that are prohibited as outer references.

Conventional query nested within row pattern recognition-query

uery can be nested in an expression in MEASURES or DEFINE. Subqueries are permitted if the
form row pattern recognition themselves, and if they do not'reference the row pattern variables
uery. Here is an example of the latter (note underlined A)

 range

bked

y do
f the

\ (note
ttern

5.16.4 Recursion

Row p

attern matching is prohibited in recursive queries. For example, the following is a syntax error:

CREATE RECURSIVE VIEW Problem (Kolo, Xoro) AS
SELECT Kolo, Xoro
FROM T

64 Row Pattern Recognition in SQL

UNION

©ISO/IEC 2016 — All rights reserved

https://iecnorm.com/api/?name=9963a2bf46bbfd6b06c9721df6a39f66

	Blank Page

