

ISO/IEC 9797-2

Third edition  
2021-06

TECHNICAL  
CORRIGENDUM 1  
2024-11

## Information security — Message authentication codes (MACs)

### Part 2: Mechanisms using a dedicated hash- function

#### TECHNICAL CORRIGENDUM 1

*Sécurité de l'information — Codes d'authentication de message (MAC)*

*Partie 2:  
Mécanismes utilisant une fonction de hachage dédiée*

*RECTIFICATIF TECHNIQUE 1*

IECNORM.COM : Click to view the full PDF of ISO/IEC 9797-2:2021/Cor.1:2024



**COPYRIGHT PROTECTED DOCUMENT**

© ISO/IEC 2024

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office  
CP 401 • Ch. de Blandonnet 8  
CH-1214 Vernier, Geneva  
Phone: +41 22 749 01 11  
Email: [copyright@iso.org](mailto:copyright@iso.org)  
Website: [www.iso.org](http://www.iso.org)

Published in Switzerland

Technical Corrigendum 1 to ISO/IEC 9797-2:2021 was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 27, *Information security, cyber security, and privacy protection*.

IECNORM.COM : Click to view the full PDF of ISO/IEC 9797-2:2021/Cor 1:2024

IECNORM.COM : Click to view the full PDF of ISO/IEC 9797-2:2021/Cor 1:2024

# Information security — Message authentication codes (MACs) —

## Part 2:

### Mechanisms using a dedicated hash-function

#### TECHNICAL CORRIGENDUM 1

##### *Clause 4*

Add the following at the end of the clause:

$[x]$  the smallest integer greater than or equal to the real number  $x$

##### 6.2.2

Replace the first sentence with the following:

If  $K$  is shorter than 128 bits, concatenate  $K$  to itself  $[128/k]$  times and select the leftmost 128 bits of the result to form the 128-bit key  $K'$ :

Replace the last equation with the following:

$$K_1 = K_1[0] \parallel K_1[1] \parallel K_1[2] \parallel K_1[3] \parallel K_1[4] \parallel K_1[5] \parallel K_1[6] \parallel K_1[7]$$

##### 6.4.2

Replace the last line with the following:

$$C'_i = K_1[1] \quad (64 \leq i \leq 79)$$

##### 6.4.3

Replace the last line with the following:

$$C'_i = K_1[3] \quad (48 \leq i \leq 63)$$

##### 6.4.5

Replace the first sentence with the following:

The 128-bit constant strings  $T_i$  for dedicated hash-function 4 are defined as follows (in hexadecimal representation):

##### 6.4.6

Replace the first sentence with the following:

The 128-bit constant strings  $T_i$  for dedicated hash-function 5 are defined as follows (in hexadecimal representation):

#### 6.4.7

Replace the first sentence with the following:

The 128-bit constant strings  $T_i$  for dedicated hash-function 6 are defined as follows (in hexadecimal representation):

#### 6.4.8

Replace the first sentence with the following:

The 128-bit constant strings  $T_i$  for dedicated hash-function 8 are defined as follows (in hexadecimal representation):

#### 8.2.2

Replace the first sentence with the following:

If  $K$  is shorter than 128 bits, concatenate  $K$  to itself  $\lceil 128/k \rceil$  times and select the leftmost 128 bits of the result to form the 128-bit key  $K'$ :

#### 9.4.3

Replace the last three sentences with the following:

The characters 00 in item c) specify two zero bits.

NOTE The number 168 is the rate (in bytes) of SPONGE[ $f$ ,  $pad$ , 1 344], where  $f$  = KECCAK- $p$ [1 600, 24]. SPONGE[ $f$ ,  $pad$ , 1 344] is referred to as KECCAK[256] in Reference [12].

#### 9.5.3

Replace the last three sentences with the following:

The characters 00 in item c) specify two zero bits.

NOTE The number 136 is the rate (in bytes) of SPONGE[ $f$ ,  $pad$ , 1 088], where  $f$  = KECCAK- $p$ [1 600, 24]. SPONGE[ $f$ ,  $pad$ , 1 088] is referred to as KECCAK[512] in Reference [12].

#### 9.6.2

Replace the first sentence of NOTE with the following:

When used as a XOF, KMAC is computed by setting the encoded output length to 0, as shown in *right\_encode(0)* in item b).

#### 9.6.3

Replace the last three sentences with the following:

The characters 00 in item c) specify two zero bits.

NOTE The number 168 is the rate (in bytes) of SPONGE[ $f$ ,  $pad$ , 1 344], where  $f$  = KECCAK- $p$ [1 600, 24]. SPONGE[ $f$ ,  $pad$ , 1 344] is referred to as KECCAK[256] in Reference [12].