INTERNATIONAL ISO/IEC
STANDARD 4396-3

First edition
2023-12

!

Telecommunications and

information exchange between
systems — Recursive inter-network
architecture —

Part 3:
Common distributed applicatign
protocol

Télécommunications et échange d'information entre systemes —
Architectyre-récursive inter-réseaux —

Partie 35 Protocole pour les applications distribuées CDAP

Reference number
ISO/IEC 4396-3:2023(E)

© ISO/IEC 2023

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org
Published in Switzerland

ii © ISO/IEC 2023 - All rights reserved

https://www.iso.org
https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

Contents

ISO/IEC 4396-3:2023(E)

Page
FFOT@WOTM.........ccccccovvevee e85 5558558555585 \%
IIMEIOMUICTION ... vi
1 SCOPI@ ... 1
2 NOIIMATIVE FEFEI@IICES ... 1
3 Terms and defiMITIONS ... 1
4 Description of CDAP
4t €bAP=RINA=ppticatiomrprotocot
4.2 Application entities (AEs) within applications...
4.3 (0] =T OO OSSR S A
4.4 Method calls 0N ODJECES ... g Corrre e
4.5 Object model
4.6 ApPlication CONMNECEION ..o Y e
4.7 Application connection state vector (ACSV) ... Bt
4.8 Requestor and responder roles ...
49 Validation of values/operations by CDAP......
410 CDAP application programming interface (API).....
411 Standardization and POLICIES ... AT e
5 SPECIHTICALIONooocccnesnsinessnessgenes b s
5.1 CDAP profile — Policies and standardization ..
5.2 Application connection establishment..£)/....
5.3 Application connection state vector (ACSV).....
5.4 Objects and the object model.......... &30 e
5.4.1 Object properties..........co@mn
5.4.2 Object model definition ™t .
5.4.3 Object model version
54.4 Objectclass........Ain7.
TSI 010 [Tt i U o [
5.4.6 Object ID —Shorthand name alias.........iiisnis
5.5 Messages and replies
5.6 Message encoding.....
5.7 Methods ontobjects.....
5.8 CDAP message....
5.8.1 (General..
5.8 2 N OPCOME ..t
58737 INVOKEID ..ot
5.8.4 ObjName, ObjID.......cociiiiiscsiicn
5.8.5 ObjNameParent, ObjIDParent
5.8.6 ObjClass
Q7 ﬂhj\]a]nn
5.8.8 Resultand ResultReason
5.8.9 SCOPE AN FIILT oot
7R 70 0 i £SO
59 Object identification in messages
5.10 CDAP meSSage/MeEthOd TEPES. ..o e
5.10.1 Object creation: CREATE(_R), DELETE(_R)
5.10.2 Object Read: READ(_R), CANCELREAD(_R)
5.10.3 Object Write: WRITE(_R) ..
5.10.4 Object Stop/Start: START(_R), STOP(LR) ..ot
6 POLICIES ...
6.1 GBIIET AL .8
6.2 POL-CDAP-CSYNTAX — Concrete syntax

LY T €= s =) o=) OO

© ISO/IEC 2023 - All rights reserved iii

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

6.2.2 Defaulti..
6.3 POL-CDAP-AUTH — Authentication
6.3.1 General ...
6.3.2 DIOIAULE e
6.4 POL-CDAP-ORDERING — Order of execution of method calls ..., 23
6.4.1 General
6.4.2 DEFAUILooooeee e s
6.5 POL-CDAP-OBJECTMODEL — Overall object model definition..........c, 24
6.5.1 GENETAL ..o
6.5.2 POL-CDAP-OBJ-VERSION — Object model version
6.5.3 POL-CDAP-OB]J-VISIBILITY — RIB objects visible to this AC......ccos
L -4 DOL _CNOAD ODI N AMINC Ol i H 4o
U.J. T I UL GUUnNI UUJ INOYIVITING UUJCLL uauuus CUILLIVUILIIUIUILL . iicciainsnsanssssssssssssssssssssssssssssnsssssnsaas
6.5.5 POL-CDAP-OBJ-ObjRef — Use of ObjName/ObjID to edentify objects.
6.5.6 POL-CDAP-OBJ-OBJCREATE — Object Creation. ...y o
6.5.7 POL-CDAP-OBJ-Types — Scalar tYyPes ...y Sl
6.5.8 POL-CDAP-OBJ-CLASSES — Defined classes.......
6.59 POL-CDAP-OBJ-METHODS — Object methods......
6.5.10 POL-CDAP-OBJ-ObjID — ODbjID values........ccorrcrnn]
6.5.11 POL-CDAP-OBJ-INITIAL — Pre-defined objects ...
6.6 POL-CDAP-ERROR — Error handling and return values
6.6.1 GENETAL ..o e
6.6.2 DEFAUIL.....ooooo e AT e
6.7 POL-CDAP-InvokelD — Convention for assigning InvokelD values
6.7.1 General
6.7.2 Default
6.8 POL-CDAP-READINCOMPLETE — Use of inconiplete READ_R...
6.8.1 GENETAl ... g M e
6.8.2 DIEFAULE ..ot e
6.9 POL-CDAP-SCOPEFILTER — Scope and\filter policy
6.9.1 General ...
6.9.2 DefaUlt ... 2
6.10 | POL-CDAP-ACSVContents — ACSV CONTENTS......ooiiiiiesieeessiieess s
6.10.1 General
6.10.2 DEFAULL.....ooooo oo
7 CDAP[CONEEXE NOLES ... s | 34
7.1 3 1 T=) o) OO NS 34
7.2 RIB DaemOn MOAEL...........ooooooooeeeeeeeeeeeeeeee oo sssssee s sseeeesssseeessssseeesssseees | 34
7.3 Distributed apPIICAtioNns ... | 35
Annex A (infprmative) Google Protocol Buffers™ (GPB) concrete Syntax............] 39
Annex B (infprmative)) JSON CONCIete SYMEAXc..oiiriereirieesiisiiessieessieessieessssesssesessessesseseeesee e | 42
BIDIHO @I aAPIY ... (oo 44
iv © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical

committees established by the respective organization to deal with particular fields
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other

of technical
international

organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the

work.

The procedures used to develop this document and those intended for its further

maintenance

are described in the ISO/IEC Directives, Part 1. In particular, the different appy
needed for the different types of document should be noted. This document w3

oval criteria
5 drafted in
directives or

accordlance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iSo-org
wwwiiec.ch/members_experts/refdocs).

[SO and IEC draw attention to the possibility that the implementation of this document
the uge of (a) patent(s). ISO and IEC take no position concerning the evidence, validity oy
of any
IEC h4
imple
from t
not be

d received notice of (a) patent(s) which may be required to implement this docum
menters are cautioned that this may not represent the latest ihformation, which ma
he patent database available at www.iso.org/patents andhttps://patents.iec.ch. SO
held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users
constitute an endorsement.

For an explanation of the voluntary nature of “standards, the meaning of ISO specif

may involve
applicability

claimed patent rights in respect thereof. As of the date of publi¢ation of this docurent, ISO and

ent. However,
7 be obtained
and IEC shall

and does not

c terms and

exprefsions related to conformity assessment; as well as information about ISO's fadherence to
the World Trade Organization (WTO) prineiples in the Technical Barriers to Trade (TBT) see
www.iso.org/iso/foreword.html. In the IE€,>see www.iec.ch/understanding-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Informatign technology,
Subcommittee SC 6 Telecommunications and information exchange between systems.

Alist pf all parts in the ISO/IEC #396 series can be found on the ISO and IEC websites.

Any feedback or questiens on this document should be directed to the user’s natiorjal standards
body.[A complete listing of these bodies can be found at www.iso.org/membé¢rs.html and
wwwiiec.ch/national*eommittees.

© ISO/IEC 2023 - All rights reserved

https://www.iso.org/directives-and-policies.html
https://www.iec.ch/members_experts/refdocs
http://www.iso.org/patents
https://patents.iec.ch/iec/pa.nsf/pa_h.xsp?v=0
https://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards
https://www.iso.org/members.html
https://www.iec.ch/national-committees
https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

Introduction

The common distributed application protocol (CDAP) is used by communicating recursive inter-network
architecture (RINA) applications to exchange application-specific data and effect remote actions. CDAP
implements the protocol messages and state machines to allow the two endpoints of a communication
flow to exchange read/write, start/stop, and create/delete method invocations on remote “objects”.
The semantics of those objects and operations are opaque to the CDAP protocol itself. Because CDAP
is not specific to RINA, it can be used by any distributed application that needs to share information or
initiate state changes with another application over a network. CDAP is used in the RINA architecture
by applications, and specifically by inter-process communication (IPC) Processes, which are specialized
applications that cooperate to create a Distributed IPC Facility (DIF) that provides netwark transport

to other appljcations.

vi © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

INTERNATIONAL STANDARD ISO/IEC 4396-3:2023(E)

Telecommunications and information exchange between
systems — Recursive inter-network architecture —

Part 3:
Common distributed application protocol

1 Scope

This dlocument provides the common distributed application protocol (CDAP)-specification. CDAP
enablgs distributed applications to deal with communications at an object level, rather] than forcing
applicptions to explicitly deal with serialization and input/output operations. CDAP provides
the application protocol component of a distributed application facility~’(DAF). CDAP provides a
straightforward and unifying approach to sharing data over a network without having to create
specidlized protocols.

This document provides:

— an overview of CDAP;

— tHe specification of CDAP;

— afescription of policies, in the specific sense introduced in the text;

— n¢tes on the context of CDAP.

2 Normative references

The fgllowing documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this.document. For dated references, only the edition citedl applies. For
undatpd references, the latest edition of the referenced document (including any amendmgpnts) applies.

ISO/IEC 4396-1, Telecommunications and information exchange between systems - Refursive Inter-
Netwqrk Architecture~~_Part 1: RINA Reference Model
3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 4396-1, and|the following
apply.

[SO and [EC maintain terminology databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at https://www.electropedia.org/

31

application object model

common distributed application protocol (CDAP) object model used in the application connection (AC)
data transfer phase.

Note 1 to entry: If an AE is capable of supporting multiple object models, this selects the one to be used for this
AC. If not, the requested object model value should match that of the sole implemented model.

© ISO/IEC 2023 - All rights reserved 1

https://www.iso.org/obp
https://www.electropedia.org/
https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

3.2
CDAP message encoding rules
encoding of bits sent for all CDAP messages in an application connection

Note 1 to entry: The concrete syntax to be used for the AC is determined by the Common Application Connection
Establishment Phase (CACEP) and provided to the CDAP data phase in the application connection state vector
(ACSV).

3.3

CDAP policy

CDAP implementation option where something can be done in multiple ways, and no single choice is
mandated

Note 1 to entry: CDAP implementers should make a choice of how to implement every CDAP policy; recomnlended
policies are prpvided in this document.

3.4
CDAP profile
specific and [complete definition of all the policies in CDAP and the object miodel that shoyild be
implemented|as described in order to create a conforming, compatible implementation

3.5
CDAP syntax version

abstract synftax

integer that ipdicates version of abstract syntax used

3.6

method call
request for the recipient application-entity (AE) to make a'call to a method (function) specifid to an
object

3.7

object
named conceptual data entity residing within the resource information base (RIB) view made available
to an application connection (AC) by the application

Note 1 to entry: Objects have a class (typé),a name and possibly an interchangeable ObjectID (OID), and { value.
The object [in in unspecified way, as object/class models and inheritance are unspecified by common distijibuted
application prtocol (CDAP)] provides a set of methods (functions) that correspond to the CDAP message|types,
which can becpme the targets of method calls on that object during the data transfer phase of the AC.

3.8
object method
method (fungtion) asSociated with an object that will be invoked by receipt of a corresponding| CDAP
message

3.9

object mode
entire set of objects available to an application connection (AC) and their collective relationships and
behavioursNote 1 to entry: The object model to be used for an AC is selected by the Application
Object Model variable set during the Common Application Connection Establishment Phase (CACEP).

3.10
object model version
specific named object model used for an application connection

Note 1 to entry: Common distributed application protocol (CDAP) does not dictate the form of Object Model
Version names/values; values are mutually agreed-upon by a priori application agreement, determined by
Common Application Connection Establishment Phase (CACEP), and possibly made available in the application
connection state vector (ACSV) for use by objects.

2 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

3.11

ISO/IEC 4396-3:2023(E)

policy point
place to optimize or configure a common distributed application protocol (CDAP) implementation to
perform some operation

Note 1

4 D

to entry: Policy points have the form POL-CDAP-x.

escription of CDAP

4.1 CDAP -RINA application protocol

The W
indivi
can b
“appli
Proce

The o
and e
share
RINA
of obj¢

CDAP
manip
reque
can ag
can b
or abs
name

CDAP
defing
such
the e]
imple

so some lowest-common-denominator choices have been adopted, and many details h

undef

CDAP
specif
level 4
core s
varial

Hual instances of a distributed program, or even independent threads of a singleprod
b considered to be “applications” if they communicate via CDAP. In typical RIN
cations” are Application Entities (AEs) residing within two instances of a Distribute
5s connected by a RINA flow.

bjects that CDAP operates upon are mutually-agreed-upon representations of the

htities between two communicating applications. CDAP does not/assume that the
any directly-accessible memory, so CDAP is an example of a\Remote Procedure

Fefers to the set of these known objects as a Resource Information Base (RIB), a vir
cts that the two applications are mutually aware of and able to address via CDAP.

does not assume that the RIB exposes the entire state of either application, or th
ulated by CDAP map 1:1 onto actual state variables or entities; CDAP simply c
sted operations on objects that the communicating applications choose to exposs
tually be virtual objects synthesized for external presentation or to generate sidg
e considered to be “projections” or “views” of implementation objects, created foj
traction purposes. While a hierarchicaltree-based organization is often used to uf
and locate objects in a RIB, CDAP itselfiimposes no particular structure.

borrows from Common Management Information Protocol (CMIP) a straightforwat
d protocol and shares many ‘properties with other remote-method-invocation ba
s the Bell Labs Plan 9 ‘file-protocol”. While known concepts are employed to
kperience of prior implementations, the design of CDAP explicitly takes into
mentations will be done in multiple languages and on various platforms of widely dif

ned in the base protocol to allow tailoring CDAP implementations for their end use.

does not defirie a single implementation specification, but is rather a framew
ic application, communication, and scale requirements can be met while still proy
pplicatien code with a consistent set of operations and behaviors. CDAP does this b
et of mechanisms with a variable set of policies that allow but encapsulate and lim
ility. Specific instances of the set of variable aspects of the protocol, e.g. message enc

ord “application” is used in this document in a general sense. Independent applicatibn programs,

ess execution
A usage, the
d Application

exposed data
applications
Call protocol.
fual database

it the objects
bmmunicates
. The objects
effects; they
convenience
ambiguously

d standards-
sed protocols
benefit from
account that
ferent scales,
hve been left

brk in which
iding higher-
y providing a
t the desired
pding syntax,

that a

1 b H - i - ades b h 1 b | o e H ili
T CITar acteTrIZcU 1T TS SPECIITAtIoON as POIICITS,; Tall DT stalldararZeu to cIrsure uueroperablllty

of different implementations. This document provides default policies as examples; in the absence of
problems with these defaults for a specific usage, it is recommended that CDAP implementations adopt
them to promote reuse and prevent unnecessary divergence.

4.2 Application entities (AEs) within applications

RINA defines an AE as a portion of an application that performs some distinct function. An AE
communicates with one or more compatible AEs in other applications to accomplish a specific function
of the application. For example, one AE in an application can deal with database access, another with
authentication, and another with reporting and management, each of which operates over and needs
access to a specific, and potentially distinct, set of remote data that is relevant to its function.

© ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

Within each communicating application, there will be one or more AE that performs a particular
purpose of communication, with a corresponding set of objects that have state, a usage protocol
(i.e. legal sequences of operations on the objects), and specific semantics. In practice, AEs may be
implemented via sub-routine libraries, threads, objects, or some other processing model, but the AE
concept is present whether explicit or implicit.

Application connections are created between an AE instance of one application and a corresponding,
compatible AE instance of another application. Applications may implement any number of AEs, and
those may conduct any number of application connections, with any number of other applications.

From a security standpoint, it is important to restrict the access permissions of an AE to only those
RIB objects relevant to its operation. While CDAP does not itself implement that separation, it provides
applications yith the information needed to do so.

4.3 Objects

5 data
safety
ents a

All modern f
and a set of
properties, a

rogramming languages can implement the concept of an object that-encapsulate
bperations upon it. Properties, e.g. fundamental types, inheritance; extensibility,
gregation capabilities, are richer in some languages than others! CDAP implem
bare-minimuEn model that can interface with virtually any existing object-0riented implementation
approach. In[the CDAP model, the AEs that are communicating with one\another via an applli}ation
connection share an object model that has a defined set of objects, objectclasses, and naming strijicture
for the objects. Each object implements a specific set of method (function) calls that operate ¢n the
object.

4.4 Methad calls on objects

CDAP messages each encode a method call, with arguments, that represents a request for a remote
AE to perform that method call on one of its objects:A CDAP protocol implementation providﬁ the
mechanisms ffor a sequence of steps that include encoding the desired method call and its arguments
into a message, sending the message over the RINA flow, decoding it, presenting the method call|to the
addressed object, possibly returning a result message, and completing the original method call. A goal of
CDAP is to allow doing this sequence of steps-in a common way, enabling a standardized programhming

API, in the fa

4.5 Object

CDAP encode
an applicatio
the set of ob
this documer
their class, th
methods, the

e of different policies for, e, glencoding syntax, implementation language, object mo

model

s read/write/start)/stop/create/delete method calls on a set of objects that is speq
\ connection. A\meaningful CDAP exchange requires that the applications agree fully
ects that canibe addressed and their exposed properties, operations, and semant
t, the "object model" is used to refer to the entire definition of the set of objects, inc
eir datadescription, their names and naming conventions, their interrelationships
ir usage pattern, and their behaviors such as side-effects. An application connec

dels.

ific to
F upon
ics. In
uding
, their
ion is

associated w
An applicatio
purpose.

ith{a specific object model, determined when the application connection is established.
N can Implement and expose, through 1ts AES, as many object models as appropriate to its

The underlying application data exposed in an object model as an “object” can actually be organized
differently than itis presented to the other AE in the object model. These “virtual” objects may represent
application data that needs to be aggregated, selected, computed, or iterated over in order to satisfy the
semantics of a requested CDAP operation on the target virtual object. Any such operation is performed
by the methods of the (virtual) objects that are exposed, not by CDAP.

Since objects and their semantics generally evolve with time, the Common Application Connection
Establishment Phase (CACEP) protocol that is used to establish an application connection allows
specifying at connection establishment time a “version” of the object model that will be used for the
duration of that application connection. This makes it possible for an application to discover a potential
incompatibility between the object model being used by the other application, and/or to have a
vocabulary of multiple object model versions to use, and to choose the correct one to use for a particular

4 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

application connection depending on its partner application. This is especially useful during transition
periods when an object model is being revised, and updated versions of applications that understand
the new model are not yet fully propagated.

There is no CDAP-defined object model or set of objects that all applications using CDAP should
implement. Object models are not part of CDAP itself.

4.6 Application connection

Application cooperation requires the applications to agree upon the syntax of the CDAP messages
(CDAP can be encoded in multlple ways) and the object model and further to agree upon the privileges
that eq / iy, capabilities,

o

or othler securlty mechamsm An apphcatlon connectlon operates within an establishnie
CACEP, that authenticates the applications, determines the message syntax and objectmod
provides these parameters for use in an application connection, prior to the data transfer
CDAPmessages are exchanged, and operations are performed on objects.

4.7 Application connection state vector (ACSV)

The CACEP, either by message exchange, defaults, or other mutually-agreed-upon method
are policies of the applications and of CACEP, and are completelyyopaque to CDAP), de
valueg of key application connection parameters before handing)off operation on the flo
transfler phase. This information is provided to the CDAP implementation via an Applicatio
State Vector (ACSV), which CDAP will consult when needed ‘as it interprets messages. W
is not exchanged via CDAP messages and is therefore net specifically defined by the CDAP
contents are relevant to some policies, especially CACEP, which should provide some of t}

process, the
el to use, and
phase where

(the specifics
termines the
v to the data
n Connection
nile the ACSV
protocol, the
e contents of

the A(SV, and to some objects, e.g. those that should\perform access permission or object model checks.

Therefore, the ACSV is defined as a visible CDAP.concept to ensure that the requirements
on CACEP and CDAP policies have a place to bethtade explicit.

4.8 Requestor and responder roles

Many [interactions between two applications are asymmetric, such as a classic client/ser
but CIDAP builds in no such constraint. The CDAP protocol is symmetric, in the sense th
may nhake method calls via GDAP messages on objects of the other side, without regard
initiatied the application connection. In this document, when the initiator of a message if
the “r¢questor”, and the recipient of the message that (optionally) generates a reply as the
it is in the context of ‘a’specific message exchange, not the original flow or applicatig
establishment. The.application AEs can have a specific role in the application connectio
asyminetrically, but'it is not relevant to CDAP operations.

4.9 |alidation of values/operations by CDAP

that it places

Uer exchange,
At either side
Lo which side
referred to as
“responder”,
n connection
h and behave

The CDAP protocol provides the mechanism for communicating method calls with va

lues, but has

no inherent understanding of the semantics of objects or the meaning of the object fields and values.
Those remain the responsibility of the applications and their object models and the policies they use.
However, CDAP messages themselves have encoding and consistency requirements. Messages are
parsed, generated, and have common operations performed on them (such as tracking replies) using
mechanisms common to any object model, and many errors in forming or parsing CDAP messages
are detected by those mechanisms of CDAP itself. Other semantic correctness requirements on the
operations carried by CDAP messages, e.g. the range of a field value in a READ or WRITE message,
are enforced by object methods; in such cases, CDAP mechanisms (such as sending a log message or
even abandoning the application connection) may be invoked by objects to request CDAP mechanism
assistance to respond to these errors.

To enhance the ability of objects to respond to and validate application connection specific parameters
such as authentication, CDAP passes application connection parameters provided in the ACSV to
object method operations for their examination. It is the responsibility of the method implementations

© ISO/IEC 2023 - All rights reserved 5

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

to validate the parameters extracted from a message, to restrict access to objects as necessary, and
to generate and present appropriate views of objects, in accordance to the application connection
parameters in the ACSV. For example, in many applications CACEP will have established credentials that
may then be used to validate access permissions (CDAP’s only role in this is to provide the credentials,
via the ACSV, to objects for use in that access validation). In practice, such common actions should be
factored out and performed by mechanisms outside the actual object method implementations. This
is especially important for security-related operations such as access permission validation, to avoid
introducing a defect opportunity into every object that is expected to perform a security check.

4.10 CDAP application programming interface (API)

. AT 5 o 'v... oLs iy

0 2 OT 2 TCITTE OT TC D gtite] CDAP
data phase. If only defines the messages that are created and consumed by such interfaces.Afhe|CDAP
¢ API is an application implementation choice. In fact, CDAP and object operations can
data operations on a RIB, with no explicit CDAP API provided. However,since alll CDAP
implementatjons have a common set of mechanisms, a common API that operates acrgss multiplel CDAP
variations is traightforward to create.

=]
=
o

0Q
=
Q
8
2
=

4.11 Standardization and policies

The purpose ¢fstandardization of a protocolisto enable interoperability, Thisis achieved by intentipnally
limiting flexipility, typically by choosing a specific, usually single, way’ that implementations ghould
encode comrmhunications, define the semantics of communication exchanges, and define all aspects
and behaviors of the objects being communicated about. Wher_ a protocol is intended for a specific

application, f

However, thd
narrowing it

framework that allows defining a variety of optimized fit-for-purpose CDAP protocol implement

In many part
for the policy
there is flexi
of variability
via CDAP an
of policies ha
combined wif

reezing options and making optimized trade-off choices is both possible and necessary.

CDAP protocol is intended to apply to a broad range of applications, so rathef than
to a specific range by setting all details in,concrete a priori, this specification proyides a

s of this document an implementation choice is designated as being a policy and a|name
r is provided to aid in defining and documenting specific CDAP implementations. [While
bility provided in message encoding and other aspects of CDAP itself, the vast majority
and policy decisions involve the object model (the specific objects being manipplated
l their behaviors), which\by their nature are application-specific. When a complgte set
s been specified for a.specific CDAP usage, including the object model, that specification
h this specification defines a CDAP Profile. Two AEs that implement the same CDAP Profile

can communjcate meaningfully.\Two AEs that implement different CDAP Profiles, in general, cannpot.

In order to 1
choices are |
pre-existing
recommende

educe unnecessary divergence among implementations, many suggested default
rovided. {n-the absence of a compelling reason (e.g. highly-constrained resource
standard_that constrains some aspect of the application), these default policy choig
d tobe.adopted. This topic is discussed further in 5.1.

policy
S or a
les are

5 Specification

5.1 CDAP profile — Policies and standardization

CDAP provides applications with a fixed set of methods, corresponding 1:1 to CDAP message types, to
effect operations on remote objects via exchange of messages. In this document common properties
of all CDAP implementations such as these are referred to as the mechanisms of the protocol. The
mechanisms for exchange of CDAP operations are defined in this document, but the bit-level encoding
of messages and the naming, values, types, and semantics and behaviors of the objects do not have
a mandated single definition. These designed-in variability points are identified in this subclause
as named policies that may vary, and are specified in detail in that context, when CDAP is used for a
specific application. Policies can be selected to optimize a CDAP implementation for (e.g. size, speed,
readability, flexibility, reuse, compatibility), to best serve the application needs.

© ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

When defining an interoperability standard for applications that use CDAP, a CDAP Profile is defined
and mandated as part of that standard. For every named CDAP policy point described in this document,
a CDAP Profile specifies the policy that compliant applications will use. To encourage commonality
across implementations, a suggested default policy is provided for each policy point; object model
definitions should adopt the default policy unless there is a compelling reason not to do so.

5.2 Application connection establishment

Application connection establishment in the RINA architecture is performed by the CACEP as described
in which is loosely patterned after the Association Control Service Element (ACSE) protocol. The details
of how the CACEP phase performs its function are not relevant to CDAP itself. To operate properly,
CDAP i Tt it ' values prior
to commencing CDAP operations. Conceptually, and commonly in an implementationsthgse values are

ata transfer phase is entered after the CACE phase completes successfully. The application
connection ends when either application closes the flow, or detects that theflow has ¢losed, or the
applicption informs CACEP that the application connection is complete. All applicatiop connection
information is discarded at that time, and a CACEP phase should be performed again if iff is desired to
resunje operation.

The fpllowing is a summary of the CACEP process to show hew CDAP fits within the enclosing
establishment framework.

Steps for creation, parameter setting, and destruction of aa application connection:

a) Establishment of a data flow (communication channel, or colloquially “connection”)|between the
applications.

r full functionality, CDAP requires that theflow delivers Service Data Units (SDUs) transparently,
in-order, loss-free, and with negligible error rate. Partial functionality can still be proyided if the in-
order and loss-free requirements areznot met. The RINA flow allocation process with appropriate
Qupality of Service (QoS) parameters:can be used to establish such a flow.

b) Esgtablishment of parametersfor an application connection.

This phase first identifies_the CACEP syntax and then carries out the CACEP protofol exchange,
which is implemented.via customizable CACEP policy, that authenticates the applicdtions to each
other to their mutuaksatisfaction (the policy can range from “no authentication required” to a bi-
directional mandatory authentication). It also determines and initializes, again via CACEP policy,
ke¢y parameters.for the CDAP data phase, saving all required information in an AC$V for use by
tHe AC anddyRIB object methods. Fundamentally, CACEP establishes and then harlds off a fully
infitialized application connection description to CDAP.

c) Theapplication connection data transfer phase.

[f the CACEP process proceeded to successful completion, the preconditions for CDAP execution
will have been established, and AC parameters will have been stored in the ACSV. The applications
then enter the data transfer phase of the AC in which CDAP messages are exchanged. The ACSV
provides all necessary information for further CDAP and object operations.

d) If the CDAP AC is no longer needed, either application typically ends the AC by requesting CACEP
to terminate it. CACEP would typically destroy the flow, but if the flow is reused, care should be
exercised to ensure that no residual information from a previous AC persists except the flow and
its properties.

5.3 Application connection state vector (ACSV)

The ACSV is provided to CDAP by the CACEP at the completion of the CACE phase, which begins the
data transfer phase by invoking CDAP initialization logic with the ACSV. The CDAP initialization logic

© ISO/IEC 2023 - All rights reserved 7

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

will examine the ACSV and may choose to reject the AC and close it immediately if it is incomplete or
inconsistent. Itis recommended that the CDAP implementation provide CACEP with enough information
to preclude initiation of an AC that cannot be supported by CDAP, or to participate with CACEP in
negotiating the parameters. The precise contents of the ACSV are a policy of a specific CDAP Profile
[POL-CDAP-ACSVcontents]. Contents of the ACSV may include implementation-specific information, but
shall include at least the following fields that are referenced elsewhere in this document:

a)

b)

d)

f)

CDAP message encoding concrete syntax specification [type integer, value (POL-CDAP-CSYNTAX)].

CDAP messages can be encoded using any desired syntax, provided that the implementations can
appropriately encode and decode it. The only requirement is that both applications can encode and
decode CDAP messages using the selected syntax correctly and that the syntax can encode the full
range of yalues needed for CDAP message fields and for each of the addressable objects.

CDAP syntax version [type integer, value (POL-CDAP-OBJ-VERSION)].

This is a value specifying which version of the CDAP specification is in use. It is solely intenfled to
allow thqg CDAP message encoding (fields and their meanings) to evolve if necessahy, and is intended
to changp only if incompatible changes should be made to the fundamentallCDAP message|types
or fields|An application shall reject an AC if the Syntax Version does ndt correspond to a|CDAP
message [syntax that it can accept and generate.

The flow|(type flow_handle).

This is used to perform I/0 operations to/from the flow. Implémentations may allow the handle
to be quégried to determine, for example, the QoS parameters or other properties of the flow. For
example,| if the QoS of the underlying flow indicates that'it is unreliable, the application dannot
assume that messages will always be received, or if received that the sender will always regeive a
requestef reply, so the application should limit its CBAP operations to a subset that can withstand
such uncprtainty or should terminate the AC. The §pecific operations available on the flow_lhandle
are impl¢mentation-dependent and not specifiedby CDAP, but a specific capability may be iplied
by speciffic policies.

The AE name requesting the AC (type string).

This may| be used by the application to-further restrict or select the set of objects in the CDAP jobject
model that can be operated upon-by this AC [POL-CDAP-OBJ-VISIBILITY]. The meaning ¢f this
parameter is opaque to CDAP (CDAP’s only role is to make it available to CDAP and to methog calls
invoked Yia CDAP messages):

The Objeft Model to be used for the AC (type integer, value described by [POL-CDAP-OBJ-VERSION]).

In the eyent that fultiple versions of the object model used by the AEs of the communifating
applicatipns exist,) e.g. due to evolution of the object model, incomplete rollout of updated
implemehtations, or unintentional implementation discrepancies, this value specifies which
one the ACwill use. If an AE implements a single object model, this value should match the value
representing-that-medel-er-the-ACshall-be-terminated—This—valueis-epaguete-CDAR-itis made

available to the method calls invoked by CDAP messages, which may adapt their behaviour to
correspond to the version in use for the AC, but it is not examined by CDAP mechanisms.

Security information.

If CACEP establishes an identity or other credentials to be used in validating permission [POL-
CDAP-AUTH], this field provides privileges/identity/credentials of the other application for
purposes of limiting the AC’s access to objects in the view. The field includes the mandatory
Verbose. The remainder of the field, if any, is specified in [POL-CDAP-AUTH]. The Boolean value
Verbose in this field indicates to CDAP mechanisms whether CDAP encode/decode and other
internal CDAP operations are to return detailed information on success or errors (if the Boolean
is TRUE), or simple SUCCESS/FAILURE return values (if the Boolean is FALSE), allowing the
policy to control potential leakage of implementation information to less-trusted applications by
CDAP mechanisms. The Boolean may also be referenced for the same purpose by object methods

© ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

when they create return values. CDAP’s only other role in security policy is to carry the CACEP-
established authentication information, if any, to the object method operations invoked via CDAP.

Additional implementation-specific information about the flow or AC, e.g. application names and
instance ids or which application initiated the flow, which do not appear in CDAP proper, can be included
in the ACSV by implementations. Such information is not used in this reference and is therefore not
mandated by CDAP, but can be useful to the application or to specific objects and can be very useful for
debugging, logging, or future enhancements.

5.4 Objects and the object model

5.4.1
The R

a)

in
by T
c A
d A
e) A

n
5.4.2
The ol
object
— T

C
— T

\%
— T

T
th

T
n¢

alphabet, .. }2[POL-CDAP-0BJ-NAMING].

Object properties
B objects that are visible to an AC have five primary properties of concern tQ-CDAP;

he class the object belongs to. This property recursively captures the type(s)of the d
e object and those of their contained data fields (the word "type" is_sometimes us
hen the methods are not included in the discussion, and generally the-word "class"
cluding the methods in the discussion).

he set of methods that are provided to operate upon the objeet:
path name that is unique among the objects available to the’AC.
value for each of the data fields of the object.

h object identifier, or ObjID, which is an integer‘assigned to a specific object as a sy
ime; like the name, it shall also be unique among all objects available to the AC.

Object model definition

pject model in a specific CDAP Profiléis defined by policy [POL-CDAP-OBJECTMODE
model policy are sub-policies:

he version (values are appli¢ation specific) of the object model to use for the cury
DAP-OBJ-VERSION].

he visibility rules for objects based on AE, authentication, or other factors [Pd
SIBILITY].

he rules for object names shall be specified explicitly (e.g. hierarchical vs. flat, synta

he rules:for objID values shall be specified explicitly (e.g. pre-assigned values, rules f
bw,0bj1Ds, ...), [POL-CDAP-OB]J-objID].

ata field(s) of
bd, especially
is used when

monym to its

]. Within the

ent AC [POL-

L-CDAP-OBJ-

K, separators,

pr generating

T

EUSE of 0bjIDS VS Objectames to identify objects sitatt be made expiicit, [POL-CDA

" OBJ-ObjRef].

Every object class shall be fully defined, including names, type, and value-consistency constraints
on all exposed fields; fields may be designated as “private” to permit specifying method behavior -
this is for specification purposes only, such fields are never made visible via CDAP, [POL-CDAP-OB]J-
CLASSES].

For each object, or group of objects with identical behavior, the methods implemented by the object
and any pre-conditions that shall be satisfied before invocation of each shall be specified, as well as
the meaning of any return values from the methods; all objects in a group shall have the same class
but not all objects of a given class shall implement the same methods, [POL-CDAP-OBJ-METHODS].

For each object or object group (e.g., Object Class), any specific authentication/access restrictions
on each method and field of the object, as required by the authorization policy as specified in [POL-
CDAP-AUTH].

© ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

— As part of the CREATE method description for each object, if implemented, rules for creating
new objects, including any restrictions on their names/objlDs, shall be stated explicitly, with any
additional global requirements in [POL-CDAP-OBJ-OBJCREATE].

— All initial mutually-agreed-upon a priori objects and structure, if any, shall be fully defined in
accordance with other policies and given an initial value. [POL-CDAP-OB]J-INITIAL]J.

In a given model, many of the properties and requirements of individual objects will be inherited from
general rules in the object model and/or from the class of the object, rather than repetitively defined
individually. For example, the methods for each object can be inherited from its object class, and access

permissions on objects can be specified by a policy that applies to all objects.

Objects may fepresent actual data in the RIB of an application, or may simply be emulated on-dé
by method cjlls on virtual objects. To provide maximum flexibility to implementations, the-0
should, when| possible, be defined in such a way that remote references to the object shouldnot h

to distinguis

CDAP provid
such operatia
methods pro
defined in the

5.4.3 Obje
The Object M
CACE phase.

factors such
are supporte

which is the case.

bs no built-in method to selectively access a data field or fields of anJobject. Thei
ns over an object model would in general be implemented either vialvirtual objects
ide the needed operation, or via a policy such as naming. Any Such convention s}
e object model.

rt model version

odel Version [POL-CDAP-OBJ-VERSION] to be used,for an AC is determined duri
The model is selected during CACEP, using a CACEP) policy that may for example co
s Application Name, AE Name, and Object Model value. If multiple Object Model Ve
1 in a CDAP Profile, every difference between‘object behaviors between the version

mand
bjects
e able

efore,
lvhose
all be

g the

Inbine

rsions
5 shall

be explicitly
modify their

locumented and each difference associated with the version(s) that reflect it. Object
behaviour based on the Object Model Vexsion in the ACSV in such cases.

S may

5.4.4 Objert class

Objects gene

ability to per
of:

a)
b)

rally have a data portion (but'eed not, though not having a data portion eliminates the
form READ or WRITE operations on the objects) that is recursively defined as being any

a scalar whose type is chosen'from a defined set of built-in scalar types,

an aggre
defined S

bation of data items all with the same type (an array), where the type can itself e any
calar or aggregate type, or

fan be

c)

bation of data items having possibly-dissimilar types (a structure), where any field
Array; arstructure.

an aggre
a scalar,

All objects algo\hvave an associated set of methods, which are functions specific to that object (pgssibly
shared with other objects, often with all others of the same class), which perform specific operations
on that object. The methods that are provided to operate upon the data can be inherited from the class
or be specific to an object (the definition is provided in the Object Model). Built-in scalar types may
have default string-valued names that can be used explicitly when creating objects with a scalar data
type, as described by policy [POL-CDAP-OBJ-Types]. All other class names are string-valued, assigned
by the object model. The class of an object is determined at its creation time and unchangeable during
its lifetime; the class is determined by the object’s CREATE CDAP message per the [POL-CDAP-OBJ-
CREATE] policy.

5.4.5 Object name

Objects can be identified as the target of a CDAP message by specifying an ObjName, a string in the
CDAP message that uniquely designates the object, or by using a synonymous unique integer, known
as an Object ID. How names and Object IDs are used in messages to identify an object are dictated by

10 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

policy, and either or both may be used, as permitted by the policy [POL-CDAP-OBJ-ObjRef]. Names are
specific to an object model, and a set of specific names and naming structure shall be agreed upon a
priori by the application AEs prior to the AC in order to be able to meaningfully communicate operations
on objects known to both parties.

While object names, encoded in messages as strings, frequently reflect an organization, such as a tree
with “leaf” nodes representing objects and “directory” nodes serving to define the structure of the tree,
the syntax and semantic conventions for naming are flexible, and are defined by CDAP policies [POL-
CDAP-OBJ-NAMING, POL-CDAP-OBJECTMODEL].

5.4.6 Object ID — Shorthand name alias

The Opject Identifier (Object ID or ObjID), encoded as an integer, is a short alternate name|for an object.
It can|be used to shorten messages and avoid the necessity of repeatedly looking\up pbjects using
ObjName strings. Whether the name or the object identifier, or both, may be supplied [in a message
to ideptify an object is defined by a specific policy that describes how objects dre to ble referred to
in mepsages [POL-CDAP-OBJ-ObjRef], and may in some cases be constrained By the capability of the
message encoding syntax [POL-CDAP-CSVersion].

If ObjlDs are in use, an object may have an ObjID with a pre-arrangedalue known to both applications,
or thg value may be dynamically assigned for use in an AC. In the\latter case, an ObjID value shall
referejnce the same object for the duration of the AC, or for the/difetime of the object if shorter. Except
for th¢ reserved value zero, which can be used in messages te indicate that no ObjID is being provided,
there |s no CDAP-defined meaning to the numerical value or phoperties of the ObjID, thougl applications
may choose to assign such meaning per their policy.

An ObjID may be sent to an application, e.g. in a reply:message, by the owner of an object foff use in future
requegts. Object model creators should consider carefully whether to permit the name of an object to be
returnped in a reply to a request that addressed the object solely with an ObjID, as this enaples a class of
enumeration attacks on a RIB, but this is a policy option and shall be explicitly specified ip [POL-CDAP-
ObjRef].

5.5 Messages and replies

CDAP|messages encode remote.method calls with arguments on a remote object usinfg a specified
concr¢te syntax. The canonical message exchange consists of sending a Request-type message,
eventyially followed by receiving a matching Reply-type message indicating the success orffailure of the
requepted operation. Reply messages shall be requested explicitly in request messages. This allows, for
examjple, for a reply to be foregone if the application would not change its behavior based|on the result
that would be retufined in the reply, for example sending a sequence of operations whose final message
can request a reply-that reflects the success or failure of the entire sequence.

CDAP|provides a mechanism to allow multiple request-reply exchanges to be in-progresg at the same
time, and, for replies to be returned in or out of order (“split transactions”), by allowing p transaction
identifyine number called an InvokelD to be included in a request and subsequently used to associate
a reply with its corresponding request. Use of the capability is optional. When using this capability,
multiple requests can be sent without waiting for replies, allowing new operations to be initiated
without waiting for opposite-end computation or network operations to complete. CDAP does
not mandate replies to return in the same order that requests were sent, though object models and
applications are free to restrict behavior to a blocking request-reply, or asynchronous, but in-order.
Some applications may choose to process requests and generate replies in order as a simplification to
program logic, while some may obtain a performance gain and therefore accept the higher complexity
of out-of-order operation. To ensure interoperability, any limitations that restrict fully asynchronous
operation with out-of-order replies shall be specified in the object model [POL-CDAP-OBJECTMODEL].

5.6 Message encoding

The encoding of the message type and other fields in the message into a form used for communication on
a “wire” (flow) is referred to as the encoding rules of the message. Agreement between communicating

© ISO/IEC 2023 - All rights reserved 11

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

applications on the encoding rules to use is a fundamental requirement for communication. For CDAP,
this is determined prior to the start of the CDAP data phase and provided to CDAP in the ACSV. This
value will select from the set of encoding rules available to the implementation; if there is only one, then
the value shall match the sole implemented rules for communication to take place.

As long as the encoding is capable of carrying the required range of argument types and values needed
by the object model, any encoding can be used.

5.7 Methods on objects

An object method invocation is requested on a remote ob]ect by sendlng the correspondlng CDAP
message and g

(i.e. same InvpkelD) and use some of the same fields as well as additional onés’to return the resulf from

the method ipvocation.

Table 1 provides the entire set of messages and corresponding methodinvocations that are reqyiested

via CDAP melssages. Each message also carries arguments to the method call; the description [of the

arguments and their types are also provided

Table 1 — CDAP message types
Messdge name/Opcode Purpose

CREATE Create an object

CREATE_R Response td/A_CREATE, carries result of create request

DELETE Delete aspecified object

DELETE_R Response to A_DELETE, carries result of deletion attempt

READ Read the value of a specified application object

READ_R Response to A_READ, returns result and (possibly-incomplete)|value
of the object

CANCELREAI Cancel a prior A_READ request that has not completed

CANCELREAID)_R Response to A_CANCELREAD, indicates outcome of cancellation

WRITE Write a specified value to a specified object

WRITE_R Response to A_'WRITE, carries result of write operation

START Startthe operation of a specified application object, typically used when
the object has operational and non-operational states

START_R Response to A_START, indicates the result of the operation

STOP Stop the operation of a specified application object, typically used when
the object has operational and non-operational states

STOP_R Response to A_STOP, indicates the result of the operation

5.8 CDAP message

5.8.1 General
Besides the message type (as indicated by the Opcode), there are a number of defined fields that can be

required or can be optionally present in a message, e.g. to encode arguments or return a result. This
clause provides an overview of each of these fields, their descriptions, and some of the constraints on

12 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

their values. Each of these fields has a meaning that is consistent across message types, but the field
may or may not be relevant or present in every message.

The definitions in this document of these fields and their types corresponds to a specific value of the
CDAP Syntax Version that is established by CACEP. Since it is possible that CDAP can evolve, for example
adding, removing, or modifying the meaning of fields or messages, we allow for the possibility by
defining an integer corresponding to a version of the CDAP message abstract syntax. CACEP uses that
integer in conjunction with the concrete syntax value to determine CDAP message processing and AE
compatibility, and passes it to the AC in the ACSV, where it may be used to select behaviors such as an
appropriate encode/decode implementation.

The value of the CDAP Abstract Syntax Version corresponding to this document is 0 (zero). Future

revisi
identi

Any eJ

(asop
[POL-

implel
errors

Tables

version of the CDAP abstract syntax, and how they are used in specific messages.

bns that would break compatibility with any previous version of the specification will be explicitly
fied in any updated specification.

ror in parsing or interpreting a CDAP message that is detected by the CDAP)impleméntation itself

posed to being detected by an object method invocation) will result in an €sfor pert

error policy

CDAP-ERROR] and will not result in invocation of an object method. Aymessage thatlpasses CDAP
mentation validation will result in an object method invocation. Object methods may also detect
; the error policy as well as object method definitions specify how those errors are handled.

| 2, 3 and 4 summarize the type and description of the different CDAP message[fields in this

Table 2 — Fields in messages — Summary

Fieldjname in specifi- Type Description
cation
(standard abbrevia-
tion)

Filter bytes Filterpredicate function to be used to determine whethef an operation
is todbe applied to the designated object(s) or not. If the fuhction returns
TRUE for the object, the operation in the message is performed; if FALSE,
itis not. The form and semantics of this field and how Resulffis determined
are defined by the object policy, not defined by CDAP.

Flags integen Logical “or” of bit values representing Boolean variables that modify the
meaning of a message when true.

InvokeID integer Unique identifier provided to identify a request, used to identify the
subsequent associated reply.

ObjClass string Identifies the object class the ObjValue in the message.

ObjID integer Object Instance uniquely identifies a single object in an} application’s
RIB. Either the ObjName or this value, or both, may be present, if the
Object Model allows. If only a name is supplied in an operftion, a corre-
sponding ObjID may be returned in the reply, and that mpay be used in
future operations in lieu of ObjName for the duration of|this AC or for
the object’s lifetime if shorter.

ObjIDParent String Used to identify the object ID of the parent of an object, in conjunction
with ObjNameParent, when a node is being created.

ObjName string Identifies a named object that the operation is to be applied to. Object
names identify a unique object within an AC.

ObjNameParent String Used to identify the name of the parent of an object, in conjunction with
ObjlDParent, when a node is being created.

ObjValue structure Value associated with the data field(s) of the object. May have a scalar,
array, or compound object type and value.

Opcode enum Message type of this message, shall select one of the limited sets of message
types described in this document, that selects the object method to call.

© ISO/IEC 2023 - All rights reserved

13

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

Table 2 (continued)

Field name in specifi- Type Description

cation
(standard abbrevia-
tion)

ResultReason string Additional explanation of Result.

Result integer The result of an operation, indicating its success, partial success in the
case of some operations, or failure and possibly a reason for failure. All
replies return a result, but, if allowed by the concrete syntax, the field need
notbe explicitly present when the result is unconditional success (zero).

Scope iuwgcl Spcbiﬁtb the dt—:pth thatthe 99454 ¢ atioistoextend 'ucyuud (01 mramber of
levels below, in a tree-structured object model) the designated object to
which an operation is to apply (subject to filtering). If missing,or pfesent
and having the value 0, only the designated object is affected.

In Table 3, the presence or absence of a field in a particular message type is defined by one of the
following treptments.
Table 3 — Legend for message field table

Symbol Explanation

M Mandatory field, shall always be present in a niessage of this type.

m Field value that shall be provided explicitly gr implicitly in a message of this typ¢. Note
that the concrete syntax in use [POL-CDAB-CSVersion] may define a missing fjeld to
satisfy this requirement by having a specific default value (e.g., zero), or the OHjClass
may be unambiguously implied by the ObjValue field encoding (e.g., a string),[or the
ObjIDParent or ObjIDNameParentinay be inferred from the ObjName per the pbject
policy; in these cases, the mandatory value requirement is met and the field may be
missing from the message encoding.

0 Allowed, but not requiredor validated by CDAP. Object models may further specify
the use and meaning of'the field.

C Conditional, may bepresent as specified for each message type.

\Y Allowed, presenceis an object model option, but if present the field value is permitted
to be validated-by CDAP against the expected value (e.g. matching a field in a r¢ply to
the original request to validate that a reply is to the correct request) as a consigtency
check forerror resilience and reservation for future semantic changes.

= Fieldumandatory, value shall match that of InvokelD in associated request m¢ssage
(see-message descriptions for usage of InvokelD).

(blank) Not permitted, presence is considered an error and invalidates the message; th¢ error
will be processed per policy [POL-CDAP-Error].

Table 4 summnparizes the situations under which each of the fields named in the leftmost column dppear
in the messagestindicated in the rightmost columns. The “=” indicator in replies means that the value

supplied in the message shall be present and match that from the corresponding request message,
usually in the column immediately to the left, or to which the response or message applies, as for a_

CANCEL_READ.

14

© ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

Table 4 — Message fields

Fieldname /Mes- ¢ ¢ g g 7 7 2 g2 2 2 2 2 2 ¢
sage 2 8 B & & & & & 5§ 3 B B S 8
= = = = | = = = = = = |
= 3] = =) = [| |)
| I o) Y pe) Py
el o) E E
o ‘U
s}
Filter 0 Vv 0 Vv 0 \Y 0 Vv 0 Vv 0 Vv 0 \Y
Flags C C C C C C C C C C C C C C
Invok¢ID 0 = 0 = 0 = = = 0 = 0 = 0 =
ObjClgss m Vv Vv Vv \Y Vv Vv \Y \Y Vv Vv Vv \Y Vv
ObjID R Vv R Vv R \Y Vv Vv R Vv R Vv R \Y
ObjName R Vv R Vv R \Y Vv Vv R Vv R Vv R \Y
ObjIDParent m \
ObjNameParent m \%
ObjValue o] o 0| ¢ m] o | o | ol o] o
Opcode M M M M M M M M M M M M M M
ResulfReason 0 0 0 0 0 0 0 0
Resul m m m 0 m m m m
Scope \Y 0 Vv 0 Vv 0 \Y 0 \Y 0 Vv 0 Vv
5.8.2 | Opcode

This field selects the method to be performed:bythe recipient of the message. It shall identify one of the
CDAP|messages defined above, encoded as defined in the CDAP Profile’s specified concret¢ syntax.

Messdges are one of two types: request.r reply. Each request message, named “X” has a cprresponding
reply message named “X_R” thatis uséd to reply to it and return a result. With the exceptioh of messages
for which no reply is requested (sée InvokelD), and REaD/READ R and CANCELREAD and CANCELREAD R in
an unfisual situation (see caNncEBREAD), request and reply messages occur in pairs. A request message
eventyially results in a correspending reply message.

5.8.3 | InvokelD

Messdge exchanges\begin with sending a request that typically expects a subsequent repl]y message to
be received, indi¢ating the success or failure of the operation and sometimes including a rgsult value. To
be ablg to assoeciate a reply message with the original request, each request message carrigs a tag value
called| the(invokelD, and that same value is included in the corresponding reply message to identify
it. If o reply message is desired, a non-zero InvokelD value shall be present in the reqyest message.
Otherwise;morepty wittbe gemreratedimrespomnse totherequest:

The InvokelD is also used by the cancErLrREAD message that is used to cancel an outstanding READ request.
In this case, the InvokelD provided in the cancerreEAD matches the value used in the associated reEaD
request. See the cancELREAD message description for further details of this usage.

The InvokelD has a non-zero integer value that shall be unique among all outstanding request operations.
Other than cancELREAD, a request with an InvokelD value that is already in use at the receiver will not
result in a method call, and will result in an action performed per the error policy [POL-CDAP-Error].
Duplicate InvokelD values are detected before examining any other fields of a request message except
Opcode, so other errors present in the message will in general not be detected and reported.

Applications may use fixed values for invokelDs, may cycle through a small number of invokelD values,
or may chose them from a larger space (the use of alarger space may provide better detection of protocol
errors.) The InvokelD value zero is reserved to indicate that no InvokelD is being specified; in encoding

© ISO/IEC 2023 - All rights reserved 15

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

syntaxes that permit omitting fields from messages, a missing InvokelD field shall be interpreted as
having a value of zero. There is no other restriction on the InvokelD value, and no other meaning is
attached to the value by CDAP.

Upon generation of a request to which a reply is requested, the requesting CDAP implementation creates
a transaction state machine for the invokelD to allow recognition of the returning reply, and sets its
initial state to one that allows recognition of the appropriate response message. Whenever a reply
message is received, the invokelD in the message is checked against all active invokelD state machines.
If no match is found, the message is discarded, and a protocol error may be logged and reported. If a
match is found, except for the case of an incomplete read response (see the description of the READ
message), the state machine is destroyed, and the reply message is then further processed.

additional ndn-empty fields of a reply message against the request message that was sent with that
InvokelD, perfthe “V” entry in the Message Fields table above. A mismatch represents an implementation
error, such a§ mis-use of an InvokelD, or a message corruption that may be logged and/6rotherwise be
reported. Sudh a failure may generate an action per the error policy [POL-CDAP-Erroty.

After Invoke|D validation, receiving CDAP implementations may as a consistency check v}llidate

When a zero|or missing InvokelD value is being sent in a request message, thesending operation is
complete as qoon as the request message is sent, no state machine is created,dnd no Result or ObjjValue
will be returhed to the requestor in a reply. This option is provided becausé-f the application lpgic is
not interestef in the return value of a result, for whatever reason, it is. imore efficient to suppress the
reply than to[request one and then ignore it when it arrives. This optieiiis usually not meaningfyl for a
READ operatjon unless the only intended result of the resulting method call at the destination is a side-
effect. It is alfo useful in the case when CDAP is used over an unfeliable medium, as the messagq or its
reply can be lost anyway.

Although CDAP is normally used over reliable connections, it is possible to construct applicptions
using CDAP that do not require guaranteed message delivery. However, this significantly impadts the
handling of InvokelDs, as the loss of a reply messageCan result in a state machine waiting indeflnitely
for a responge with that InvokelD value and permanently preventing reuse of that InvokelD [value.
Therefore, applications structured to operate ovéb an unreliable transport should generally not r¢quest
replies. Such psage of CDAP becomes a convention that shall be consistently followed by all objecfts and
shall be specfified explicitly for them in the 6bject model.

5.8.4 ObjName, ObjID
Either an ObjName or ObjID, or-both, reference a unique object that is the target of a messqge, as
described eaflier. Either or both may be present, as specified in the policies [POL-CDAP-OBJ-OpjRef]
and [POL-CDAP-OBJ-OBJCREATE]. Specifying a null ObjName is the same as not supplying a name| there
is no default.[ObjName issan opaque string to CDAP. It is up to the object model to specify the syntax,
semantics, arld encoding of the name, CDAP only uses it in identifying the object. ObjID is an alterpative
way to identify an ebject; it can be more efficient than using a name, but they are otherwise euniFalent

for CDAP’s puyrpose. A value of zero for ObjID is reserved to indicate that the value is unknown for not
supplied; no ¢ther values are reserved, and the ObjID value is not otherwise interpreted by CDA

If a CDAP message addresses an object by ObjName without using an ObjID, a reply message may include
an ObjID that can be used in place of the ObjName in subsequent operations to address the object. The
application assigning an ObjID value is obligated to ensure that the ObjID value corresponds to the same
object for the duration of the AC or for the lifetime of the object, whichever is shorter.

5.8.5 ObjNameParent, ObjIDParent

These fields can be used in a cREATE message to identify the object that is to be considered the “parent”
of the object named by ObjName/ObjID. CDAP itself has no concept of “parent”, other than transporting
these fields, but the object model may. When used, these fields uniquely identify the targeted parent. In
some object models, the name of the object being created (e.g. a fully-qualified name in a hierarchical
naming structure) will provide sufficient information to infer the parent object, and these fields would
not be needed. In other object models (e.g. one in which names are not used at all, only ObjIDs), these

16 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

fields can provide that structural information. The policy defining how these fields are used, if they are,
is [POL-CDAP-OBJ-OBJCREATE].

5.8.6 ObjClass

The ObjClass field specifies the object class of the ObjValue field encoded in the message. The object that
is the target of a request message, or the object generating a reply message, determines what class or
classes of ObjValue can be interpreted or generated by that object. If an ObjValue is present in a message
but no ObjClass is present, CDAP mechanisms will attempt to decode or encode the ObjValue according
to the object class of the targeted object. If decoding fails, CDAP mechanisms will report an error, but
if an ObjValue in a request message is decoded properly per the ObjClass but that object class is not

j ject - i i itHpe performed

error policy [POL-CDAP-Error].

The OpjClass string shall match the name of a class that is defined in the object modellin theg CDAP Profile

[POL-LDAP-OBJ-CLASSES] policy. The class definition informs the conversion.that is to |
by CDAP between the value as encoded in the ObjValue field in CDAP messages'and the va
an object of that class. The values used as ObjClass name strings are not defined or interpr
they gre simply compared for equality with object class names that are defined in the

The CPAP implementation provides the capability to convert an objéet’s data fields into
concr¢te syntax used by the CDAP Profile and ObjValue fields given-the class of the object.

For n¢w objects being created using a CREATE message, either’the ObjClass field shall
present in the message and shall match a known object class@ame, or the [POL-CDAP-OB]J
policy] shall specify how the type encoding implicitly ,er{explicitly present in the mess
syntax is used to infer a specific ObjClass value.

The [
used

fields
of the

OL-CDAP-OB]J-Types] policy in the CDAP Profile defines the set of basic scalar type
0 construct classes. These shall be sufficiently rich to represent the full range of v

objects that they can operate on.

5.8.7 | ObjValue

The O
WRITE
ObjVa
optior

bjValue field of a message.éncodes the value of the data portion of an object. For a
or CREATE message, it _encodes a value to be made available to the object for

ue for a successful READ message is provided in the rEaD R reply message, and an

ally be returned by:some other reply messages. The ObjClass in the message in con

pe performed
ue portion of
eted by CDAP,
bbject model.
and from the

be explicitly
OBJCREATE]
age concrete

s that can be
ues of all the

a
pof the defined objects; CDAP implementations need not implement types that are ncrt used by any

TART, STOP,
writing. The
DbjValue may
unction with

the concrete syntax enceding defined in the CDAP Profile [POL-CDAP-CSYNTAX] defines how the value

is enc
every
CDAP;

ded in the message. The CDAP implementation is responsible for being able to encod
type/class)data portion defined for this CDAP Profile in the [POL-CDAP-OBJ-Typg
CLASSES])policies.

When|a message is created, the CDAP implementation APl may allow the application to 1

e and decode
s] and [POL-

equest CDAP
d if the CDAP

to creptethe ObjValue field with a subset of the object’s data fields included explicitly, an|

Profile’s concrete syntax permits it, CDAP will generate messages with only those fields, omitting all
other fields (thus potentially shortening the message). When an object method is invoked by CDAP, it
is provided with the decoded value from the message and a description of which fields were explicitly
provided values in the message and which were not.

CDAP mechanisms will attempt to encode the value of an object into an appropriate form for the
designated object class, per the concrete syntax, as an outgoing message is being constructed. If a value
cannot be encoded into the target field type of the concrete syntax, an error will be returned to the
application and no message will be sent. Similarly, if an incoming message contains a value that after
parsing cannot fit without loss of information into the target data field of the object, the message will
be treated as having a CDAP message encoding error and action performed per the error policy [POL-
CDAP-Error]. No method will be called.

© ISO/IEC 2023 - All rights reserved 17

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

5.8.8 Result and ResultReason

The Result value is a signed integer, returned in response messages to indicate whether the requested
operation was successfully performed. The value 0 (zero), which is assumed if the field is omitted from
the message, is reserved and indicates unconditional success. The value -1 is reserved and indicates
that the operation did not complete successfully, but does not guarantee whether or not some side-
effect occurred. Other specific values that provide additional information may be defined in the CDAP
Profile. All values less than zero indicate failure, and may encode a reason or reasons for the failure. All
values greater than zero indicate non-failure, but may also convey other explanatory information about
the results of the operation. The error policy shall define any values that are intended to have the same
meaning by all implementations of the object model. Implementations shall only use values defined in

the pollcy in nt‘nrmining an-action to take after success or F:n']nrn; all other success or failure values

should be trepted as if they were 0 or -1 respectively.

The ResultRgason value optionally provides additional information about the result. Its‘¢onterlts are
an applicatiop choice, and it is never mandatory. It may be returned in any reply, as'desired by the
applications. [It has no CDAP-mandated format, but can, for example, by application(convention, be a
Unicode stripg that provides a human-readable explanation for a failure, or provide informatipon for
logging and tfacking purposes. The form and usage of this field, if used, shall be described in the jobject
method definlitions in the object model (or in other CDAP Profile policies).

In low-trust ACs it is recommended that a minimum of information bé _provided to the other |party.
Therefore, a descriptive Result value or ResultReason should generallyZnot be supplied if the feason
for a failure dan convey useful information to an untrusted party, such as invalid account name, ipvalid
password, ingdequate access privilege, existence of an object thatthe caller does not have the reqyiested
access to, etc{ See also the description of the ACSV “Verbose” Boolean.

5.8.9 Scopg and filter

CDAP is often used in an environment where the RIB data possesses a hierarchy or does grouping of
objects (for example, “all flows, organized by destination”). It can sometimes provide a large saying of
communicatipn time and cost to operate on a set-of objects using a single message, though such|usage
can also greafly increase the impact of any ersors made. CDAP provides a basic way to encode a r¢quest
to serially pefform a specific method call pn“multiple objects with one message, though it is a chpice of
the CDAP Pr¢file how and whether to;permit these operations. Two fields are provided to implement
this capability: Scope and Filter.

A message that includes the Scopeiand Filter fields names a single object per the object reference [policy
using its ObjName and/or ObjlD; we refer to that object as the root of the operation. The rempining
fields, particfilarly the Opcode, ObjClass, and ObjValue fields, specify the method to perform on each
object; the ObjClass and-ObjValue are provided to each method invocation. The Scope is a non-nejgative
number indidating hgw;many levels into the structure owned by the root, whatever that means(in the
object modelfto prepagate the operation. The value zero is reserved to indicate that only the targgt is to
be affected, any-otheer value indicates the additional depth into the structure. The simplest example is a
(sub)tree, roqted-at the target. The Scope value in this case is the depth of the nodes below the tafget to
operate upon.

The Filter is a predicate that optionally restricts the operation to objects satisfying some condition. The
Filter is a side-effect-free Boolean predicate, with syntax and semantics defined in the CDAP Profile. The
Filter procedure is invoked for each object within the scope, providing the predicate with the object as
an argument. If the predicate returns True, the method call is made to the object. If not, no call is made.

CDAP defines no other semantics for Scope/Filter. Any CDAP Profile that defines Scope/Filter operations
shall define the meaning of Scope, the syntax and semantics of the Filter predicate, and define the
semantics of each method call that is allowed and how return values, if any, are defined. This policy is
[POL-CDAP-SCOPEFILTER].

18 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

5.8.10 Flags

The Flags field carries a set of Boolean flags that can modify the meaning of a message, en
integer.

coded into an

The F_SYNC flag may be set TRUE on request operations to indicate that if multiple values are being

read or written or if multiple side-effects occur as an effect of the message, that they are

requested to

be performed in a synchronous, atomic manner, i.e. not interleaved with other operations that can be
outstanding at the same time. Providing synchronous operations can be an expensive or impractical
operation in some cases, so the default semantics of the order of execution of operations that affect

multiple objects (possibly hidden, presented via a single virtual object) is that access o
occur in an unspecified order. The F SYNC option is useful for virtual objects whose n

r side-effects
nethods shall

accesy multiple underlying objects or for Scope/Filter operations. This is not always

requept, and not all implementations can be capable of providing the requested coheren
Profile shall define the behavior of methods on objects when this flag is TRUE ifn)policy
ORDERING]. The Profile shall also define how the Result and Flags values in reply messa
objects if the F_SYNC request is known to have failed. The default is to ignore-E(SYNC, unlg
specifiied.

The F/INCOMPLETE flag may be used in a READ request to indicate that the response tq
permiftted to be incomplete and shall be used in a READ_R when the!READ is incompletsg
InvokelID should not yet be retired. F_ INCOMPLETE is further discussed with the READ_]
described below.

Unassjigned bits in the Flags field that are not defined in¢this document shall be ZERO iy
missing flags field in a message, if allowed by the concréte syntax, shall be interpreted as
unassprted value of any new flag defined in the future{will be zero. This convention rese

An exijisting object shall be unambiguously identified in a message in order for the re

h meaningful
cy. The CDAP
r [POL-CDAP_
bes are set by
ss otherwise

the READ is
and that the
R message, as

messages. A
hll-zeros. The
ves the flags
DAP message

Fipient of the

messgge to identify its methods and\data portion and to operate on it. Policy [POL-CDAR-O0BJ-ObjRef]

identifies how objects are to bé,unambiguously referenced using a combination or 3
ObjNajme and ObjID. In the fallpwing list, references in messages to existing objects are
being|'legal object references" to distinguish them from "illegal object references".

A message with a legal‘object reference:

unambiguously references a single object by its ObjName and/or ObjID per the obj
policy.

An illggal pbject reference includes one of the following:

dpesnot satisfy the policies (e.g. has neither ObjName or ObjlD, or otherwise is missi

Iternative of
described as

ect reference

hg a required

identifying field);
has both an ObjName and an ObjID, and they reference two different objects;

the object does not exist.

The rules are slightly different when creating a new object, as described for the CREATE operation

described below.

Messages containing an illegal object reference are rejected by CDAP prior to any method invocation.
They may be logged or some other action performed per the error policy [POL-CDAP-Error]. Additional
information about the cause of the failure may be encoded into the Result value and/or ResultReason

fields.

© ISO/IEC 2023 - All rights reserved

19

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

5.10 CDAP message/method Ttpes

5.10.1 Object creation: CREATE(_R), DELETE(_R)

creATE and DELETE messages are used to create new objects and to delete existing objects from the
RIB of the receiving application. If the object referenced by the crREATE message does not exist and the
message is otherwise valid, an attempt will be made to create an object with the designated ObjName
and/or ObjID, per the [POL-CDAP-OBJ-OBJCREATE] object creation policy. Otherwise, the operation will
fail and be treated per the error policy.

The object class of the created ob]ect is determlned by the contents of the message and/or the object’s

designated pa

message and
inherent in it
object meth

ObjValue is p
object creatic

If a crREATE ad
considered a
a new value 4
in the latter d

ObjIDs may i
operation, an
the crREATE m
ObjID was pr
and may ber

Objects may
object whose
by a DELETE
that AC.

CDAP does n
the destinati
OBJCREATE]
ObjName to

fields.

Objects can b
or cannot be

(if requested)).

returned (if g

he Value and its Ob]Class [whether exp11c1tly prov1ded or 1mp11ed by the type 1nforr

encoding in the concrete syntax of the message) are acceptable to the recipientCH
d and/or its parent, the new object will be assigned an initial value based on it
rovided, the object may be assigned a class-dependent initial value if se-specified
n policy or in the object class definition for the object’s class.

D

EATE
hation
' EATE

If no
in the

dresses an existing object, the object creation policy determines wheéther the operation is

1 error and handled per the error policy, or whether the creaTr/is allowed to simply

write

o the object. A cREATE operation on an existing object cannot.chdnge its ObjClass, byt may

ase change its value.

n some object models be solely assigned by the application at the destination of a
d in those models shall not be specified in a creaA%Z message. If an ObjID is speci

essage but cannot be used for the new object foryany reason, the operation will fail.

ovided, one may be assigned in accordance with the [POL-CDAP-OBJ-OBJCREATE]
bturned in the crReaTE R reply along with a success result.

REATE
ied in
If no
policy

be created and destroyed by an application at will in the application’s own RIB, b
ObjID has been shared during an AC with the apposite application is destroyed. oth

%;
operation by the apposite, that ObjiP’value shall not be reused for a different object luring

pt specify how a new obje€t:is to be fitted into any hierarchy that might be preg
bn application’s RIB; thisys a policy decision. The object model policy [POL-CDA
describes how the parent of newly-created objects is determined, e.g. by examini
dentify a containingnode/parent, or by using the ObjNameParent and/or ObjID]

e deleted by.sending a DELETE message referencing the object. If the object is not
deleted for-any other reason, a DELETE_R reply with a failure result will be ret
If the'object has been deleted, a DELETE_R reply with a success return value y
reply,is requested).

if an
than

ent in
P-OB]J-
hg the
Parent

found,
urned
Vill be

5.10.2 ObjectRead: READ(_K), CANCELREAD({ K)

5.10.2.1 General

An application can fetch the current value of an object using a rReaD operation. If the specified object
exists, and the InvokelD value in the message is non-zero, and the value can be obtained, the value is
returned along with a success result in a Reap_R message. If the object or value cannot be located or
read but a reply is requested, then a READ R message containing a failure result is returned.

It is not mandatory to request a reply. Sending a READ message with no or a zero-valued InvokelD will
not generate a READ_R reply, but may produce a useful side-effect depending on the object.

CDAP does not define the semantics of including an ObjValue in a rReaD operation, but it is allowed. The
default is to ignore it, but an object can treat it as an error or implement an operation using it, e.g.

20 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

summing the ObjValue into the object’s current value before returning the updated value, or exchanging
the previous value with the value in the ObjValue field. Any behavior other than ignoring the ObjValue
shall be documented in the object model policy for an object or class.

The 7 1ncompLETE flag may be set in the Flags field in a READ request as an indicator to the receiving
object that an incomplete rEaD R is requested. This is a suggestion and may be ignored by the object
unless other behavior is explicitly specified in the object model.

5.10.2.2 Incomplete READ_R

If the Value ofthe ob]ect is too large toreturninaREAD R reply message or if the semantlcs of the object

e e E , , ponse and that
READ R reply
messdge. Thus, multiple reap_r replies with the same InvokelD can be received in respofse to a ReAD.
This dould be used to, for example, implement a Publish/Subscribe operation on ahlebject, responding
with ¢hanges such as object value or status (e.g. entries in a log file or a temperature feading). The
InvokeID state machine created for the rReap operation by the requester will remain active until a
READ| R with matching InvokelD and the r 1ncomprATE flag unset is received, or a CANCELREAD R is
receivied with the matching InvokelD as described below. Any number of jncomplete reap| r replies can
be sert prior to completion of a READ.

In the|object policy [POL-CDAP-READINCOMPLETE], the object.definitions or the generalfobject model
shall identify objects that may return an incomplete reaD and.desCribe the semantics of the operation.

5.10.3.3 Canceling a rREAD with CANCELREAD

The sender of a rREAD can cancel the outstanding rEaD before receiving a corresponding READ_R by
sending a canceLREAD with the same invokelD valie originally sent in the rReap requegt. A READ_R
messdge or messages responding to the READdnay already be in transit and will still [be delivered,
but nq new rReaD R messages will be generatéd after the cancELREAD is received. When the cANCELREAD
messgge is received, if the InvokelD corresponds to an active READ state machine, the outgtanding READ
operafion at the destination is cancelled,the InvokelD is retired, and a CANCELREAD R is rgturned using
the refired InvokelD, indicating that.the corresponding READ operation has been cancellgd.

The fqct that the rReap may have @lready completed and the InvokelD state machine at the destination
destrqyed when the cancerrERD arrives leads to a race condition that shall be handled at the requesting
side: when the sender of the READ and subsequent cancELREAD is awaiting the CANCELREAD R response,
it shalll also recognize that'a completed rReap_R with the matching invokelD may be in-flight before the
CANCELREAD is received and acted upon. If the sender of the caNCELREAD receives a completed READ R, it
will npt receive a CANCELREAD R message because the cancELREAD would have arrived after| the invokelD
was retired and‘would be discarded because the InvokelD wasn’t active. In this case, the¢ rReap sender
can inpmediately destroy the InvokelD state machine upon receipt of the completed

5.10.3 .Object Write: WRITE(_R)

An application can modify or set the value of an object by using wr1TE. An ObjValue argument is normally
included to provide the new value, though it may be meaningful for some object classes to have an
“unset” value, which can be provided by omitting the ObjValue completely. An ObjClass field provided
in the message (or provided implicitly by the encoding of the ObjValue in the concrete syntax) describes
the class of the ObjValue, and together these are presented to the WRITE method of the object. If the
object does not exist, or if it does not implement the wrITE operation on the object using the provided
ObjClass, or if it cannot be written for any other reason, a wrT1TE_R reply message will be returned (if
requested) with a failure result. If the object exists and the object considers the wrITE to be successful,
awrITE Rreply message will be returned (if requested) with a success result.

Objects may be active objects, as well as simply containers for passive data. Therefore, CDAP wrITE
messages may have side effects, such as affecting a device or causing an operation to be performed.

© ISO/IEC 2023 - All rights reserved 21

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

WRITE R messages may optionally return a non-empty ObjValue; the meaning of such a value is not
defined by CDAP, it is determined by the object and shall be described in the object model for either
the specific object or for its class. Depending on object definition, it might be the value of the object
before the wrITE is performed (an exchange-value operation), the value after, or something else, such as
a function of the previous value and the value provided by the wr1TE (e.g. a running sum).

5.10.4 Object Stop/Start: START(_R), STOP(_R)

CDAP does not define semantics for the started/stopped status of an object, other than to recognize
that “operational status” is a common property of many real-world objects. Conceptually, starting an
object with sTarT begins the process of making it operational, whatever that means. Stopping an object

with sTop ber?mmmmmhrmmmmmi—
If it is meaningful to the object, an ObjValue can be provided in a sTaRT or sTop message. For lexample,

this can designate the power level that a running system is to be taken down to on a stop, Interpretation
is up to the object and shall be described in the object model.

Although it if left to the object to decide when to send a sTarRT R or sTop R, generally the reply yvill be
sent after thelobject has either failed to begin the operation or failed to reach the desired state, inwhich
case an errof result will be returned, or has reached the requested state,/with the result indicating
success or dggree of success. The exact meaning of sTarT, sTop, and any returned result is a property
of the object{and shall be described in the object model. If no result-is-needed, a reply need nhot be
requested.

6 Policies

6.1 General

All policies shall be fully defined in a CDAP Profile;-which provides a policy definition sufficignt for
implementatjon for every policy that differs from the default. The Default policies provided here §hould
be used if there is no compelling reason to use.a'different policy.

6.2 POL-CPDAP-CSYNTAX — Concrete syntax

6.2.1 Gendral

This policy identifies how CDAP) messages are to be encoded for transmission over a flow as a stream
of octets (“byftes”) in a given-AC. The syntax to be used is specified by an integer value establisied by
CACEP and nlade available:to CDAP in the ACSV. The value that defines which syntax CDAP shall yise, as
provided in the ACSVyshall be selected from Table 5. Values are in hexadecimal, with Ascii equivjalents
enclosed in single quetes for reference when useful.

22 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

Table 5 — Values of CDAP concrete syntaxes

Syntax version integer value [Name Description

8 GPB Google Protocol Buffers™ [ref],
see Annex A for definition

7B (‘{) JSON JSON [ref],
see Annex B for definition

61-7A (‘a’-'z"), HTTP Reserved, shall not be used at this time

41-5A (‘A7) pending definition

80-FF Experimental Available for experimental use be-
fore adaption as a conyention in this
specification

80-FE ASN.1-x ASN.1 encoding(s]'where x will corre-
spond to PER, BER, etc

All other values Reserved Reservedfor future, shhll not be used

6.2.2 | Default

The default policy is GPB, as defined in Annex A, selected by providing a Concrete Syntax Mersion value

per thee table above in the ACSV.

6.3 POL-CDAP-AUTH — Authentication

6.3.1| General

Autheptication policy is used if CACEP establishés an identity or other credentials which gre to be used
by CDAP in validating permission to access agbjects.

6.3.2 | Default

A Boolean variable, Authenticated;is identified in the ACSV.

If a npn-null authentication policy is defined for this AC and has been successfully pgrformed, the
Authepticated Boolean value‘in the ACSV is TRUE (non-zero) and the credentials in the ACSV are valid,
otheryvise is FALSE (zero):

The dgfault is no authentication, and an ACSV Authenticated Boolean value of FALSE. Apthentication
credeptials in the"ACSV are not valid, and this AC shall not be allowed to access or mqdify any RIB
objectls with fion-public values or meaning, or access the RIB in any way that could diprupt normal

operation ofthe applications.

6 4_ O CDOAPRAOARDERIANC NDnd oz £ 1oz £ ot o |
. VULUUALI "UNULNIINUO UIUTI Ul TATLULIVUIL Ul 11ITLIIUU Ldlio

6.4.1 General

The InvokelD mechanism enables replies to request messages to be returned in a different order than
the requests arrived. This is an optional behaviour. Unless otherwise specified in this policy, all request
messages will result in the execution of their corresponding object methods in the order in which they
are received, and replies will be returned in the same order as their corresponding requests.

This policy also specifies the treatment of the F_SYNC flag in the Flags field of messages. It may be set in
any message, but has no effect unless a specific behaviour is specified in this policy or in the description
of an object that obeys it.

© ISO/IEC 2023 - All rights reserved 23

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

6.4.2 Default

Incomplete READ_R messages, CANCELREAD_R messages, and the final completed READ_R after one
or more Incomplete READ_R messages have been sent have no specified order of return with respect
to their corresponding READ requests or other replies. All other method invocations occur, and replies

are returned,

in the order that requests are received.

6.5 POL-CDAP-OBJECTMODEL — Overall object model definition

6.5.1 General

The overall o
named sub-p|
identified in
created and
CDAP Profile

6.5.2 POL-

hject model 1s defined by [POL-CDAP-UBJECTMODEL]. The overall policy cCOmprises s
olicies. Together, these policies describe the object naming convention, how obje¢
messages, how objects are related, the defined atomic types and classes, how abjec
nitialized and for what purpose, and the initial set of objects defined fon-this md
may modify or replace these individual policies or accept the defaults.

CDAP-OBJ-VERSION — Object model version

6.5.2.1 General

This value is
The value ha
required or C

6.5.2.2 Def

At AC initiati
Version valud
any time a
maximum
If an AE chog
its own max
security.

VIaIﬁ

used to select from among the available Object Models kniown to both members of t
5 meaning only among compatible AEs within compatible applications, there is no
DAP-defined meaning assigned to any specific valuer encoding of this number.

ault

bn time, CACEP will negotiate between.thie/two AEs and choose a proposed Object
(“Version”, below) to be used for the AC: The Version value increases in numerical
aterial change in behavior is made~to any object or policy of the object model,

ues generally provide critical information about the degree of compatibility of th
ses to communicate with anather AE that proposes to use a different version leve
mum, it shall accept or modify its behavior as necessary to preserve compatibilif

AEs may acc
upgrade pat
problematic
compensate

Version value
textual form

bpt multiple Versions, or a range of Versions, for example in order to provide a s

ersions and reject’the AC if such a version is proposed, unless the AE is able to thw
r the problem.

i. AEs should maintain a list of Version values for prior known-insecure or k

s are theresult of combining a set of three integers that define a Version, represern
0S:

nor.fix

major.mi

pveral
ts are
ts are
del. A

he AC.
CDAP-

Model
value
50 the
e AEs.
| than
y and

mooth
hown-
art or

ted in

where

"major" differentiates among incompatible versions,

"minor" represents the version level of important changes, such as fixing serious defects or security-

endangering problems, that should be considered when accepting the AC, but the AEs should

otherwis

e be able to communicate,

"fix" represents any bug or cosmetic change version that should not change compatibility, but may

correct a less-serious defect or change AC-invisible behavior (e.g. logging of errors).

AEs shall agree a priori on the criteria for “serious” vs. “less-serious” changes for purposes of
categorizing version changes and agree upon encoding of these fields into a Version integer and on the
maximum values allowed for each field.

24 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

The default encoding is that the Version is treated as a 32-bit unsigned integer, with each of the fields
encoded into 8 bit unsigned bytes, with the high order byte (“extension”) reserved for use as described

non

below and "major”, "minor", and "fix" residing in the next-higher to low-order bytes, respectively.

If the extension byte value is non-zero, the entire Version value is defined in an AE-specific way, and
will be interpreted as agreed upon a priori by the AEs.

non

The initial value for the "major”, "minor", and "fix" fields is zero. The most significant field in which
a change of the corresponding type has been made is incremented upon release of a change of that
magnitude of the object model. All lower-order fields are returned to zero when any higher-order field
is incremented.

proposed AC with a lower "minor" value than their own maximum, but if an AE accepts|an AC with a
lower|"minor" value than its own maximum value it shall accept behaviors consistentwith that earlier
versi

AEs shall reject ACs with any ‘major value not implemented by the AE. AES may chooIe to reject a

6.5.3 | POL-CDAP-OB]J-VISIBILITY — RIB objects visible to this AC

6.5.3.L General

This policy describes how the set of ObjNames/ObjIDs within~the overall Object Mode]l to be made
visiblg to this AC is selected. This may be the entire RIB, a virtualized RIB subset (e.g. s¢lected by AC
AE), ofr any other view over the RIB.

6.5.3.2 Default

All objects in the RIB are potentially visible, but*attempts to access a specific object willl generate an
“objedt not found” error if the requestor does net have permission to invoke any method|of the object.
Howeyer, some other error may still be generated during the method invocation, e.g. if the object does
not injplement a specific requested method-or if the requestor does not have sufficient privilege for the
requepted operation.

6.5.4 | POL-CDAP-0BJ-NAMING->= Object naming convention

6.5.4.1 General
The naming policy has'several parts:

a) tHe syntax of<the’string used in the ObjName field of a message to identify an object] if names are
b¢ing used;

b) the syntax of the names of objects, if different;

c) howato use the contents of the ObjName field to identify the object.

All of these shall be specified.

6.5.4.2 Default

All objects have a non-null name, as described in the syntax below. ObjName fields in messages are
defined in a way that presents a tree-structured name space that defines the path through the tree
to the desired object. The underlying RIB may or may not be tree structured, but the ObjName string
presents that appearance by its syntax. The “/” (hex 2F) character is used to separate parent node
names from children node names.

It is up to individual object definitions whether parent nodes are objects that provide methods or serve
only as naming artifacts used to create the tree structure. The sequence of parent nodes leading to the
final (rightmost) child name in the ObjName, in addition to that rightmost child name, uniquely identify

© ISO/IEC 2023 - All rights reserved 25

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

the addressed object in the RIB. The rightmost name is considered to be the node name of the object; a
string that identifies that object relative to its parent(s) within the tree is a pathname to the object.

The syntax of the ObjName field of a message:

node_name ::= [UTF-8 characters excluding “/” and NUL]+

object_name ::= node_name

relative_pathname ::= [node_name “/” |* object_name

absolute_

pathname ::= “/” relative_pathname

Unless specif
pathname, w
as aleaf, or a
root, or may |

A separate p
parent” obje(
any relative
messages by
absolute path

The NUL cha
identification
identification
the ObjName
ignore such ¢

6.5.5 POL-

ied otherwise in a policy, the ObjName string in a message may either be anab
nhich describes the path from the root of the name tree that culminates in the named
relative pathname, which can begin at an intermediate parent node of the tfée-belg
hame the object itself.

blicy may define how relative pathnames are to be interpreted; forexample, a “d
t could be defined to provide a string that holds a name-prefix thatlis to be prepen

shortening ObjName fields. Absent such a policy, relative pathmames are interpre
names.

acter (hex 00), if present in an ObjName field, terminates the field for purposes of
; it and any characters following the NUL will besgnored during the process of
, but the entire field is available to invoked methods. If an object examines charac
field beyond the first NUL, its behavior shall be documented. The default is to tolera
haracters.

CDAP-OBJ-ObjRef — Use of ObjName /ObjID to edentify objects

6.5.5.1 General

This policy d
object to whi

pscribes how ObjName and/or ObjID are used in request messages to uniquely ident
Ch the message refers. In ady policy that allows both to appear in the same message

error when they do not refer to the same object and will be treated as such using the error policy,

The policy fi
messages is d

6.5.5.2 Def

The default H
message to id

pbr the similar ObjNameParent and ObjIDParent fields which appear only in CH
efined in the object creation policy [POL-CDAP-OBJ-OB]JCREATE].

ault

ehayiour is that either the ObjName or the ObjID, or both, shall be present in a r¢
entify'the addressed object.

solute
object
w the

efault
Hed to

athname to convert it to an absolute pathname. This can be used, for example, to shorten

ted as

object
object
ers in
lte and

fy the
tis an

L EATE

pquest

6.5.6 POL-

CDAP-0OBJ-0OBJCREATE — Object creation

6.5.6.1 General

This policy defines whether new RIB objects can be created via CREATE messages, how either the object
name or object ID, or both, are determined using any or all of the ObjName, ObjID, ObjNameParent,
and ObjIDParent fields of the message, and how the ObjValue in the message is used. Additionally, any
general creaTE policies or requirements that apply to all objects shall be specified. Optionally, object

class specific

26

or object specific creaTE rules which vary from the default may be specified here.

© ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

6.5.6.2 Default

Objects can be created using the crREATE message, subject to restrictions that may be imposed by
authentication and other properties of the AC described by other policies, and restrictions imposed by
the semantics of the specific object to be created.

An object class shall be provided by the crReaTE message, whether an ObjValue is present or not. The
ObjectClass may be provided explicitly by the ObjectClass field or implicitly by the encoding of an
ObjValue in the concrete syntax. Unless documented otherwise for that object in the object definitions
or in the object model for that class, this will become the object class of the newly-created object.

An initial value may be provided in the creEaTE message. The ObjValue in the CREATE message will be
provided to the CREATE method of the object, which will validate it and either use it or refturn an error
per thie error policy. If no ObjValue is provided, the class may either reject the CREATE rejquest if there
is no $ensible default, or provide one; if there is a default, it shall be documented,in the¢ object class

description.

Object
the v4
will b
restri
WRIT
differ

A cred

CREATE

case 1
from f{
being
ObjID
pathn
“/”, an|

In gen
that it
an Ob

s that already exist may be the target of a crReEATE message. In this¢ase, the CREATE may use
lue in the crReaTE message to modify the value of the object like a\WRITE, thoughl the message
b processed by the creaTe method of the object so the semanti€s ymay differ (e.g. fhere may be

Ctions on the ObjValue that are based on the current value).If(this behaviour is
E semantics, the object class definition or object definition grREaTE method shall
brCes.

ited object shall have a non-empty name, which shall-be specified in the ObjNa
message in one of two ways. The ObjName fieldthay contain an absolute pathna
either ObjNameParent or ObjIDParent may be<présent, and the name of the pare
he pathname. Or the ObjName field may have'the name of the object, with its imm
identified using either the ObjNameParent ‘o1’ ObjIDParent field; either an ObjNam
Parent, but not both, shall be present inthis case. If the parent is explicitly specified
hme of the newly created node will be the concatenation of the absolute pathname o
d the contents of the ObjName field:

eral, object ID values are assigfied by the owner of the RIB that the object is being
can manage its own numerical object ID space. Therefore, the cREATE message sh3

ifferent from
ocument the

e field of the
me, in which
ht is deduced
bdiate parent
Parent or an

the absolute
the parent, a

created in so
11 not specify

ID unless the object ID value provided with the object name has been agreed upon a priori, e.g.

ng an initial object per.policy [CDAP-POL-OBJ-INITIAL] or corresponds to an acc
ge as documented inthe object model per policy [CDAP-POL-0OBJ-CLASSES] and [CI}

bptable value
AP-POL-OBJ-
brror and the

. If an ObjID is present and is not assigned in accordance with such policy, it is an

age, or both,

present in the parent 1dent1f1ed by a CREATE message Wlll be invoked by CDAP loglc to potentlally create
the child targeted by the creaTE message. The parent’s creaTE cHILD method is passed the CREATE
message and can exercise its discretion on how and whether to actually create the object. If the parent
does choose to perform the object creation, it will in general request that CDAP logic create the object
in the RIB and will then perform any operations required to complete its initialization, which may
include invoking the creaTe method of the newly-created object with the original CREATE message.
The presence and definition of the creaTE_ca11.D method shall be included in the definition of any object
class that provides such a method.

An object need not have a creaTe cuTILD method to be the parent of other objects. In the absence of a
CREATE CHILD method in the parent, or if the parent name does not correspond to an actual object but is
simply a place-holder in the name space, the CDAP logic will create the object in the designated location
in the RIB and invoke its crReaTE method with the contents of the crREATE message.

© ISO/IEC 2023 - All rights reserved 27

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

6.5.7 POL-CDAP-OBJ-Types — Scalar types

6.5.7.1 General

Class names are always string-valued, their names are assigned in the object model. Built-in
types may similarly have defined names that are strings that can be used as the ObjClass value
creating scalar objects. The class of the value in a message may in some cases be inferred fro

scalar
when
m the

ObjValue field of a message as described below, in which case an otherwise missing ObjClass value may

be considered to be supplied.

Implementations are not requlred to support all the defined types 1f they are not used by any defined

object or cla
be defined, t
use them.

ey may never occur in messages if all the implemented objects have no value field

Some concrefe syntaxes do not support a rich set of types (e.g. JSON and GPB do not explicitly &
integer precifion), so implementations are responsible for ensuring that object valugs can be cc
into a message syntax unambiguously and parsed from a message unambiguously’so that the v
communicatdd accurately between the sender and recipient.

6.5.7.2 Default

The fundamejntal scalar type names shown in Table 6 are reserved far uSe by objects and object ¢
as the ObjClaks of a scalar value in a message and may be used in specifications of aggregate (ar
structured) gbject classes. When creating scalar objects, the nanyes of these built-in types may b
as the ObjCla$s, or in some cases as noted elsewhere, the ObjGlass'may be implicit in the encoding.
creating an dbject, if a value encoded in the crREATE message. using the current syntax does not

self-evident grecision or signedness, and there is no pre-artranged policy for selecting such prop

S may
s that

ncode
erced
hlue is

lasses
ray or
b used
When
have a
brties,

implementations shall provide an explicit ObjClass in the message.
Table 6 — Pre-defined default scalar ObjClass names

Name Description

U1l Unsigned 8-bit (1 byte}integer value

U2 Unsigned 16-bit (2'byte) integer value

U4 Unsigned 32-bit (4 byte) integer value

U8 Unsigned 64=bit (8 byte) integer value

U16 Unsigned128-bit (16 byte) integer value

I1 Signed:8-bit (1 byte) integer value

12 Signed 16-bit (2 byte) integer value

14 Signed 32-bit (4 byte) integer value

I8 Signed 64-bit (8 byte) integer value

116 Signed 128-bit (16 byte) integer value

F4 32-bit (4 byte) floating point value, IEEE-754 format

F8 64-bit (8 byte) floating point value, IEEE-754 format

F16 128-bit (16 byte) floating point value, IEEE-754 format

B Boolean value (“TRUE”, “FALSE”, or numerically coded as FALSE = 0, TRUE = any nonzero value)
S Variable-length string, UTF-8 encoded

D Variable-length arbitrary binary data

28 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

6.5.8 POL-CDAP-OBJ-CLASSES — Defined classes

6.5.8.1 General

Every object class to be used in a message sent in the AC shall be fully defined, including exposed
fields, defined methods and their arguments, side effects of method calls, method invocation order
restrictions (“protocol”), and (if specified in [POL-CDAP-AUTH]) any authentication/access restrictions
on each method and field. Class names are string-valued, assigned and documented in the object model.

6.5.8.2 Default

Objecfs Ay Tave any scatar type as tIeiT ObjeCt Ciass, USINg the reserved type names. No additional
classes beyond the scalar types are defined by default.

6.5.9| POL-CDAP-OBJ-METHODS — Object methods

6.5.9.. General

This policy defines how specific method implementations are assigned te-objects, and any pther method
behavjiours that are specific to the object model.

6.5.9.2 Default

By default, each Object Class implements a method call for each of the CDAP message tyges defined in
5.10 that is meaningful for objects of that class. Any message that attempts to invoke an unfimplemented
methdd is in error and will be reported per the errotpolicy.

All objects with the same Object Class share the 'same methods. There is no default mechanism for
selectjvely associating a different method with' any specific object. Methods whose behpviour varies
depenlding on specific-object properties, fortexample, the location of an object in the RIB, shall internally
modifly their behavior to accommodate su€h variation.

6.5.10) POL-CDAP-OB]J-0ObjID —QbjID values

6.5.1()0.1 General

ObjID|values may be pre=assigned, reserved, have a pre-defined order of use or generatioi, be assigned
within a specified rahge of values, values or ranges of values that the other party is alloyed to assign,
or thdre may be ether rules governing the ObjID values to be used in an AC. Any such|rule shall be
documented inthis policy. See also the [POL-CDAP-OBJ-OBJCREATE] policy for restrictions on ObjID
valueg in CREATE messages. As documented elsewhere, an ObjID value may not be reuded within an
AC for a different object unless both parties are aware that the earlier object with that value has been
deleted.

6.5.10.2 Default

ObjID values shall fit within a non-zero 32-bit unsigned integer. ObjID values are either assigned a priori
and known by both ASs to refer to the same object, or otherwise shall be assigned by the AS that creates
the object in its own RIB in response to receiving a CREATE message. There are no reserved or pre-
assigned object ID values by default, other than those that may be assigned to initial objects per policy
[POL-CDAP-OBJ-INITIAL]. All AEs shall use such initially assigned ObjID values for those objects.

Object Class definitions defined by policy [POL-CDAP-OBJ-CLASSES] may also pre-define ranges or
conditions on ObjID values for use by objects of that class, which may include allowing ObjID values
meeting those restrictions to be provided in CREATE messages. Those policies shall be defined
consistently so that object id values are assigned in a non-conflicting and unambiguous way.

© ISO/IEC 2023 - All rights reserved 29

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

6.5.11 POL-CDAP-OB]J-INITIAL — Pre-defined objects

6.5.11.1 General

This policy provides the set of objects that can be assumed to be present at the beginning of an AC prior
to any operations. This includes the defined name and/or object id, object class, parentage if not defined
by the name or object id, any methods that differ from the class default, and initial value if different
from the default for the object’s class.

6.5.11.2 Default

None at this timme:
6.6 POL-CPDAP-ERROR — Error handling and return values

6.6.1 Gendral

This policy describes how error conditions described in this specification, as,well as errors ariging in
the executior] of object methods, are handled. It catalogs the Return values used to describe sucdessful
and unsuccegsful object operations. It defines the conventions for use and may provide a partial or
complete dictionary of ResultReason strings corresponding to specific errers.

Error Return|values returned in the Result field of a reply shall use-walues compatible with Table 7 to
indicate sucdess or failure. Any specific values returned from an implementation may be defihed in
the Policy. Sgecific failures can communicate additional information about the cause of the errqr that
may be used fin diagnosing the cause of the problem. Receipt of specific values as defined in the [Policy
may be used fo select a corresponding action upon receipt.Jimplementations receiving an unrecognized
specific valug should treat it as equivalent to -1 if negative, or 0 if positive. If an AC is establishegl with
a low-trust application (not defined in this specifieation), or for any other reason, applicationfs may
choose to retpirn only -1 and 0 values in lieu of specific ones.

Table 7. CDAP return values

Value Meaning

>0 Specific success

0 General Success

-1 General Failure

<-1 Specific Failure

-9999 to 9999 Reserved for CDAP Profiles, values outside this range areavail-
able for application use

6.6.2 Defaplt

The policy may use different methods to report different types of errors and may choose to categorize
handling into categories such as those in Table 8 (which is suggested, not mandatory).

30 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

Table 8 — CDAP error types

Class Error type Description Examples
1 Communication|Errors upon attempting to send or |Flow timeout, error on send, error on receive
Failure receive a message
2 Message Parse Fail-| Message cannot be parsed per the|Missing or invalid OpCode, incorrect-length
ure concrete or abstract syntax message, syntax or other error in encoding,
corrupted SDU
3 CDAP Usage Error | Message contains one or more fields | Attempt to consume too many InvokelDs, illegal

thatviolate a concrete syntax, CDAP |field(s) in message for its type
limit, or other requirement of CDAP

4 Value, Type, or|Afieldcontainsavalue that cannotbe|ObjClass in message incompatible yvith addressed
Range Error coerced to fit the type of the targeted | object, InvokelD out of specified|range, integer
field of an object, or is otherwise out|value too large for target field, Strjictured object
of the specified range value in wrong encoding o¥missing mandatory
field(s)
5 Semantic Error Amethod cannot be found or ameth- | Inconsistent field values, value gut of required

od has reported that there is a se-|range, inappropriate operation for object, un-
mantic problem with the message |specified exror occurred during execution of
method

6 Warning A potential problem has been de-|Alimif (é.g. InvokelD limit) is beirlg approached,
tected, but operation is not (yet)|an.«xcess of messages is being 1eceived, a po-
impacted tential implementation error hasjpeen detected

7 Informational Statistics, spontaneous events, ifi-| Authentication success and time,[flow statistics
formation that could be usefdl in|(e.g. response times), resource usage
logfiles

8 Debug Information not normatlyised in|Logging of output of message parser, program
operation, but usefulfor finding|flow markers, software revisi¢n and status
problems information

Error$ of class 1 can cause CDAP to request CACEP to abandon the AC, logging the eyent locally if
possiljle. Implementations may chooseto delay attempting to re-establish communication to the other
applicption if this event occurs an implementation-defined number of times within an implementation-
defindd period.

All eryors that cause a message‘to be ill-formed or uninterpretable (class 2-3) should cause CDAP to log
the eryor locally, log it via‘a generated CDAP message to the other application if there is 4 means to do
so, anfl may request to(CACEP that the flow be closed. If an AE chooses to continue after guch an error,
unprefdictable additiénal errors may result, so implementations should terminate an AC 3fter a policy-
set number of such.errors occur in the AC.

All ertors of.¢lasses 4-6 that occur in processing messages that request a reply should |be replied to
with gn appropriate value in the Result field of the reply message, possibly then sending fan additional
error logging message to the other side if there is a means to do so, possibly followed by terminating the
AC. AllLe gemerated CDAP

message to the other s1de if there is a meansto do So, poss1bly followed by termmatmg the AC. Errors
should be logged for offline analysis.

All spontaneously generated messages of any level, including Informational and Debug messages, classes
7 and 8, may be logged via a generated CDAP message to the other side if there is a means to do so. If the
amount of traffic so generated can result in exhaustion of InvokelD values, the reporting messages shall
not request replies, or shall limit the number of InvokelDs consumed to keep the number below the
limit. If the amount of traffic sent would be so high (greater than an implementation-dependent rate)
that it can result in a denial of service to normal ongoing message exchanges, the message generation
shall be stopped or limited by discarding excess traffic. If any such traffic is limited by discarding, a
periodic message of the same class indicating how many messages were discarded should eventually be
sent.

Table 9 defines the followingSpecific Result values.

© ISO/IEC 2023 - All rights reserved 31

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

Table 9 — CDAP specific result values

Result Name Value Description

<0 All values less than zero indicate failure. Side effects may have occurred
(application specific).

<-9999 Reserved for application-specific errors.

>0 Non-failure. The value provides additional information.
>9999 Reserved for application-specific degree-of-success indicators.
R_SUCCESS 0 Unconditional success. The operation was performed as requested, and no

errors were encountered.

|
R_SYNC_UNII\"[P 1 A sync operation could not be performed synchronously as requésted, but
the operation was performed successfully on a best-effort basis.
R_FILTER_FALSE 2 An otherwise-correct operation specified a non-null filtér)and thd filter
returned FALSE for all addressed objects. No operation‘was perfornped on
any object.
R_FILTER_MIKED 3 An otherwise-correct operation specified a non-null filter, and thd filter

returned FALSE for one or more objects, and TRUE for one or more objects.
No operation was performed, and no value is returned, for the objeclll(s) for
which the filter was false. The operation.is performed as requested for the
object(s) for which the filter was true.

R_FAIL -1 An operation failed for an unspgeified reason. (This generic value should be
returned in situations wherethe’application does not completely tryst the
requesting application, in oxder'to avoid providing it with useful information.
No resultReason should beprovided in that situation.).

R_OS_ERR -2 An operation resulted'in an error from the operating system, for example
because of a file system error. If available, a description of the errdr is in
the ResultReasony(Note that OS values are not standardized, so repprting
them may haveélimited value).

R_OBJNOTFOUND -3 The supplied ObjClass/ObjName pair, or supplied Objlnst, does not forre-
spond tg.a known object.

R_OBJBADID -4 The stipplied ObjName does not correspond to the supplied ObjID vajue.

R_CLASSNOTFOUND |-5 The supplied ObjClass does not correspond to a known class.

6.7 POL-CPAP-InvokelD = Convention for assigning InvokelD values

6.7.1 Gendral

This policy ghides-the assignment of values to InvokelDs, and any semantics associated with the value

of an InvokelD<{The value zero represents no InvokelD and is therefore never an InvokelD valye; the
allowable ran ge Cf ‘vralid !n"ycke!D xvraluec and any rncfwif‘f'innc or v*n‘nf']'\nl‘l that chall ho niced for their

TOITCE THLy T C Ot TCCTOTIo O e tIio ottt T oo oo aoco 1o

assignment, or any restrictions on the number that may be active at once, shall be specified. Receivers
of an InvokelD value other than zero shall not recognize that value as having a specific meaning. If there
are specific values of InvokelD that are significant for any reason to the requester (e.g. always used for
a dedicated purpose), they may be specified in this policy for documentation purposes, but the recipient
shall not take advantage of that knowledge.

6.7.2 Default

InvokelD values are assigned a value other than zero that can be encoded in a 32-bit unsigned integer.
Implementations may limit the number of InvokelD state machines they implement for incoming
operations, and thus the number of unreplied messages, to the number sufficient for their own
operation. This may be a value as small as 0, implying that a reply is immediately returned for all

32 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

messages requesting a reply before the next incoming message is processed. Values have no implied
semantics, and there is no required process for assignment of InvokelD values to requests.

6.8 POL-CDAP-READINCOMPLETE — Use of incomplete READ_R

6.8.1 General

This policy defines general rules for when an object or class of objects may return a rReap r with the
F_1ncoMpLETE flag set, and how to interpret the value and result in such messages. Generic rules that
apply to all objects whose behavior is not specifically documented shall be stated in this policy.

The [JOL-CDAP-InvokelD} policy may Specify a fower {imit on now many outstanding unreplied requests
are allowed to be active, and may place a separate limit, which shall be no larger, on -the number of
unreplied messages that may be outstanding at any instant by objects repeatedly.using incomplete
READ Rreplies.

For objects that may return an incomplete rReaD R, each such object shall Specify its behaviour if it
differ$ from the default.

Requgstors who receive an incomplete READ_R can at their discretiod return a CANCELREAD response
at any|time. Responding objects or classes may not impose any other requirement on requestors.

6.8.2 | Default

Objects or object classes that may return incomplete ReA® R messages shall be documented to do so,
and the conditions under which they do so shall bedocumented. Such objects should document the
frequ¢ncy (maximum and minimum), conditions thatwill cause a rReap r reply, and what cpnditions, e.g.
an error or reaching a maximum number of incomplete rReap R replies, will cause the REAI) to complete.

Requgstors may set the = 1ncovpLETE flag ifhothe Flags field of a READ request messagq to explicitly
requept that such an object send incomplete replies. Responding objects may ignore the¢ request and
return a single ReEaD R reply.

Objects representing collections of objects, such as array-valued objects, may return apy number of
their ¢lements in a succession of zero or more incomplete READ R messages, followed byf a completed
(r_1ndompLETE flag unset) READ R message containing the final element(s), if any. Unlgss otherwise
speciffied, array elements,are returned in the messages in their ascending order in the array; all
elemepts are sent, fromfirst to last. The object may not be guaranteed to be unchangifg during the
sendinpg of the messages; since sending can take arbitrarily long, so this operation should not be used
unles¢ that behavior is"acceptable or the object definition provides a different defined behavior.

Any updesired-ihcomplete ReaD R reply returned from an object may cause the recipientfto undertake
an erfor handling action. A recommended action is to respond with a caNncELREAD request with a
negatijve Ervor value, which allows the requestor to cancel its InvokelD state machine fof the original
READ request immediately and provides it with a reason for the cancellation.

6.9 POL-CDAP-SCOPEFILTER — Scope and filter policy

6.9.1 General

This policy defines how Scope and Filter are to be interpreted and applied. The policy shall define how
the Scope variable is to be interpreted in the context of the object model. For a hierarchical RIB model,
the scope shall be defined as the number of levels of the tree below the addressed node that are in
scope, but for any other model a complete definition shall be provided in the policy.

The Filter policy shall define the syntax and semantics of the language used in the filter function, and
how the procedure is encoded in the field.

© ISO/IEC 2023 - All rights reserved 33

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

6.9.2 Default

No defaults are defined.
6.10 POL-CDAP-ACSVContents — ACSV contents

6.10.1 General

This policy defines the contents of the ACSV. Every field, its type, the meaning of the field, and any
defined values for the field, shall be provided. If there are requirements on specific values in the ACSV,
they shall be specified. The ACSV itself is not communicated between applications, it is used solely by the

application Idgic, but in order to provide the mandatory contents, specitic information shall be ingluded
in the CACEP|exchange and thus the [POL-CDAP-ACSVcontents] policy is a source of requirententfs for a
compatible syipporting CACEP implementation.
6.10.2 Defaplt
The flow undprlying the AC that is referenced in the ACSV shall provide in-order, gap-free, low bit{error-
rate transfer fof SDUs.
dAE narr:E (string) The name of the opposite-end AE.
dApp naine (string) The name of the opposite-end application.
SAE name (string) The name of this AE.
SApp name (string) The name of this App.
MaxSDUlLength (int) The maximum length SDU¢that can be sent or received on the flow.
Authenti¢ated (Bool) Whether the authentication policy succeeded.
7 CDAP cpntext notes
7.1 Genergl
Clause 7 collgcts suggestions foruise of CDAP that are not mandated but can lead to greater commdnality
of implementptions.
7.2 RIB Dgemon model
Applications | can” implement CDAP in many different ways. While not mandated or explicitly
implemented|itdny way by the CDAP protocol, the RINA Reference Model assumes that CDAP operptions
are generatetd—and-interpreted-bya—RiB—DBaemon*—compomrent-of-the—applicatiomrthatatsomdnages

operations on RIB data objects. In this model, rather than being explicitly requested by applications,
CDAP operations are typically generated as a side-effect of operations that an application performs on
its RIB, onto which the RIB “view” is provided. The “view” is typically a combination of a subset of the
application’s RIB objects and synthesized pseudo-objects.

In this model, the RIB Daemon is responsible for maintaining the values of RIB variables with the
desired degree of consistency for each object, ideally transparently in the background. Thus, depending
on the freshness requirements for data, and/or whether side-effects are to be created by an access, an
internal data access by an application may result strictly in operations on local data, or may generate
the need for the RIB Daemon to perform CDAP protocol operations immediately or eventually. For
example, a hypothetical “RIBread(object)” operation on an object whose value is not cached or whose
locally-held value is stale might cause the RIB Daemon to generate a ReaD CDAP operation. The API call

34 © ISO/IEC 2023 - All rights reserved

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

ISO/IEC 4396-3:2023(E)

can delay return until the rReap R reply is received, or can return immediately with the requested value

being

made available later via an event.

Many other implementation approaches are viable; there is no mandated CDAP implementation API.

7.3

Distributed applications

The CDAP protocol can be used to create a distributed application, in which the objects stored in the
RIB of an application instance represent its view of, and/or its portion of, the complete distributed RIB
of the distributed application. The local view of the distributed objects’ coherency, consistency, and
timeliness are under the explicit control of the application by manipulating those properties of the object

in the
this p

the application will not use those communication API's directly. Its view of the distributec

throu

ASN.1

CDAP

CDAP-
op
in
op

OpCod

CDAP-
&o
&M

WITH
oP
}

Allop

RIR wq+hnw than hy nrag noinag avnlicit ~ munication nnnvru- ioncd
=23 1=

ramming Pay coran 10 ntha
=5+ - By-pre g REHSHRE-exprcicomtcatioh-eperateonSi+tne

fogramming model, the CDAP and AE are not necessarily explicitly visible to theap

bh its own local data objects.

syntax of CDAP

DEFINITIONS AUTOMATIC TAGS ::= BEGIN

lessage ::= SEQUENCE ({

Code CDAP-OPERATION. &opCode ({AllOperations}),

rokeID INTEGER DEFAULT O,

Data CDAP-OPERATION. &MessageType ({AllOperations} {@opCode})

1%

P ::= ENUMERATED { -- list of possible operation“codes
create,
createResponse,
delete,
deleteResponse,
read,

readResponse,
cancelRead,
cancelReadResponse,
write,
writeResponse,
start,
startResponse,
stop,

stopResponse

}

DPERATION ::= CLASS {
bCode OpCode UNIQUE,
EssageType

EYNTAX (
ODE &opCode MESSAGE &MessageType

brations CDAP-QPERATTION - -= {

pplication. In
blication, and
| RIB is solely

InvokeOperations |
ResponseOperations

}

InvokeOperations CDAP-OPERATION ::= ({
createOperation |
deleteOperation |
readOperation |
cancelReadOperation |
writeOperation |
startOperation |
stopOperation

}

ResponseOperations CDAP-OPERATION ::= {
createResponseOperation |
deleteResponseOperation |

© ISO/IEC 2023 - All rights reserved

35

https://iecnorm.com/api/?name=89c07637a7c1f1038d7dab5e0f0d1c9f

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Description of CDAP
	4.1 CDAP –RINA application protocol
	4.2 Application entities (AEs) within applications
	4.3 Objects
	4.4 Method calls on objects
	4.5 Object model
	4.6 Application connection
	4.7 Application connection state vector (ACSV)
	4.8 Requestor and responder roles
	4.9 Validation of values/operations by CDAP
	4.10 CDAP application programming interface (API)
	4.11 Standardization and policies

	5 Specification
	5.1 CDAP profile — Policies and standardization
	5.2 Application connection establishment
	5.3 Application connection state vector (ACSV)
	5.4 Objects and the object model
	5.4.1 Object properties
	5.4.2 Object model definition
	5.4.3 Object model version
	5.4.4 Object class
	5.4.5 Object name
	5.4.6 Object ID — Shorthand name alias

	5.5 Messages and replies
	5.6 Message encoding
	5.7 Methods on objects
	5.8 CDAP message
	5.8.1 General
	5.8.2 Opcode
	5.8.3 InvokeID
	5.8.4 ObjName, ObjID
	5.8.5 ObjNameParent, ObjIDParent
	5.8.6 ObjClass
	5.8.7 ObjValue
	5.8.8 Result and ResultReason
	5.8.9 Scope and filter
	5.8.10 Flags

	5.9 Object identification in messages
	5.10 CDAP message/method Ttpes
	5.10.1 Object creation: CREATE(_R), DELETE(_R)
	5.10.2 Object Read: READ(_R), CANCELREAD(_R)
	5.10.3 Object Write: WRITE(_R)
	5.10.4 Object Stop/Start: START(_R), STOP(_R)

	6 Policies
	6.1 General
	6.2 POL-CDAP-CSYNTAX — Concrete syntax
	6.2.1 General
	6.2.2 Default

	6.3 POL-CDAP-AUTH — Authentication
	6.3.1 General
	6.3.2 Default

	6.4 POL-CDAP-ORDERING — Order of execution of method calls
	6.4.1 General
	6.4.2 Default

	6.5 POL-CDAP-OBJECTMODEL — Overall object model definition
	6.5.1 General
	6.5.2 POL-CDAP-OBJ-VERSION — Object model version
	6.5.3 POL-CDAP-OBJ-VISIBILITY — RIB objects visible to this AC
	6.5.4 POL-CDAP-OBJ-NAMING — Object naming convention
	6.5.5 POL-CDAP-OBJ-ObjRef — Use of ObjName/ObjID to edentify objects
	6.5.6 POL-CDAP-OBJ-OBJCREATE — Object creation
	6.5.7 POL-CDAP-OBJ-Types — Scalar types
	6.5.8 POL-CDAP-OBJ-CLASSES — Defined classes
	6.5.9 POL-CDAP-OBJ-METHODS — Object methods
	6.5.10 POL-CDAP-OBJ-ObjID — ObjID values
	6.5.11 POL-CDAP-OBJ-INITIAL — Pre-defined objects

	6.6 POL-CDAP-ERROR — Error handling and return values
	6.6.1 General
	6.6.2 Default

	6.7 POL-CDAP-InvokeID — Convention for assigning InvokeID values
	6.7.1 General
	6.7.2 Default

	6.8 POL-CDAP-READINCOMPLETE — Use of incomplete READ_R
	6.8.1 General
	6.8.2 Default

	6.9 POL-CDAP-SCOPEFILTER — Scope and filter policy
	6.9.1 General
	6.9.2 Default

	6.10 POL-CDAP-ACSVContents — ACSV contents
	6.10.1 General
	6.10.2 Default

	7 CDAP context notes
	7.1 General
	7.2 RIB Daemon model
	7.3 Distributed applications

	Annex A (informative) Google Protocol Buffers™ (GPB) concrete syntax
	Annex B (informative) JSON concrete syntax
	Bibliography

